
Evolution STEllaire en Rotation

User’s Guide

February 20, 2025

Contents

1 Getting started 4
1.1 Prerequisites . 4

1.1.1 A note about the performance of the code 4
1.2 Installation . 5

1.2.1 Configure . 5
1.2.2 Build and Install . 6
1.2.3 Updating the code . 6

1.3 Checking the Installation . 6

2 Basic usage 7
2.1 Configuration files . 7
2.2 Default values . 8

2.2.1 Chemical composition . 9
2.2.2 Opacity tables . 10

2.3 ester 1d input parameters . 10
2.4 ester 2d input parameters . 11
2.5 ester evol input parameters . 12
2.6 Some recipes . 12
2.7 Spatial resolution and memory requirements . 12

2.7.1 Estimating the precision of the output model 13
2.8 Generating custom output files . 15
2.9 Python module . 19

2.9.1 Using ESTER Native format . 19
2.9.2 Using HDF5 . 19

3 General structure of the code 24
3.1 Equations to be solved . 24

3.1.1 With dimensional variables . 24
3.1.2 Simplifications . 25
3.1.3 Scaled equations . 26
3.1.4 Boundary conditions . 27

1

3.1.5 Integral constraints . 28
3.1.6 The mapping . 28

3.2 The algorithm . 28
3.2.1 Discretization . 28
3.2.2 Iterations . 29

3.3 Implementation . 29
3.3.1 The vector . 29
3.3.2 The equations . 31
3.3.3 Comfort equations . 39
3.3.4 Setting interface and boundary conditions 40
3.3.5 Implementation of Newton’s algorithm . 41

3.4 Modifying the equations . 42
3.4.1 Adding a new force or a heat source . 42
3.4.2 Adding a new equation and a new variable 42

3.5 Heading towards time evolution . 43
3.5.1 Simple scheme for hydrogen burning . 43

4 Matrix Algebra. The matrix library. 46
4.1 Matrix creation and manipulation . 46
4.2 File input/output . 48
4.3 Operators . 49
4.4 Block diagonal matrices . 50
4.5 Reference . 51

4.5.1 A note about methods and functions . 52
4.5.2 Matrix manipulation . 53
4.5.3 File input/output . 56
4.5.4 Special matrices . 57
4.5.5 Matrix functions . 58
4.5.6 Mathematical functions . 60
4.5.7 Block diagonal matrices . 63

5 Numerical differentiation 65
5.1 Introduction . 65

5.1.1 Collocation/Pseudospectral methods . 66
5.1.2 Relation with spectral methods . 67
5.1.3 Multi-domain . 68
5.1.4 Numerical differentiation in ESTER . 68

5.2 Multi-domain Gauss-Lobatto numerical differentiation 68
5.2.1 Example . 71

5.3 Gauss-Legendre numerical differentiation . 73
5.3.1 Example . 75

5.4 Reference . 77
5.4.1 Gauss-Lobatto differentiation . 77
5.4.2 Legendre differentiation . 79

2

6 Mapping. Axisymmetric spheroidal coordinates 83
6.1 Introduction . 83

6.1.1 Coordinate mapping . 83
6.1.2 Spheroidal coordinates . 86
6.1.3 Multidomain and continuity conditions . 94
6.1.4 The meridional stream function . 95

6.2 Coordinate mapping in ESTER . 99
6.2.1 Example . 102

7 Stars in three dimensions 104
7.1 Introduction . 104
7.2 The mapping . 104

7.2.1 Question of symmetry . 104
7.3 Geometrical quantities . 106

3

1
Getting started

1.1. Prerequisites

The ESTER libraries depend on some external libraries that should be installed in the system,
namely:

• BLAS, CBLAS and LAPACK, for matrix algebra. There are several alternatives available,
as for example:

– Netlib. This is the original implementation. The LAPACK library can be found at
http://www.netlib.org/lapack, and already contains BLAS, but CBLAS should be
downloaded separately from http://www.netlib.org/blas.

– ATLAS (Automatically Tuned Linear Algebra Software). An implementation of LA-
PACK/BLAS that is automatically optimized during the compilation process. It can
be found at http://math-atlas.sourceforge.net/. It contains LAPACK, BLAS
and CBLAS.

– Intel MKL. Contains an optimized version of LAPACK, BLAS and CBLAS for Intel
processors.

• Python

• HDF5 for standardized model output (optional). HDF5 is available at http://www.

hdfgroup.org/downloads/.

1.1.1. A note about the performance of the code

The performance of the ESTER code depends strongly on LAPACK. To get the best results, use
an optimized (and parallelized) version.

4

http://www.netlib.org/lapack
http://www.netlib.org/blas
http://math-atlas.sourceforge.net/
http://www.hdfgroup.org/downloads/
http://www.hdfgroup.org/downloads/

1.2. Installation

Please go to the wiki pages to get the latest instructions for installation. Now we prefer to use
the cmake software to do the installation (Jan. 2019).

The latest version of ESTER is available from the git repository:

$ git clone https://github.com/ester-project/ester.git

or from a source tarball: http://ester-project.github.io/ester/.
The tarball source is for users who need a stable version and develop their own applications

from it. The git repository version is for users who want to keep up with the lastest version of
the code or even want to contribute to its development.

If you choose to get ESTER from the git repository, you will need to have libtool, autoconf
and automake installed. The first step after cloning the repository is to run the bootstrap script:

$ cd ester

ester$./bootstrap

This will create the configure script.

1.2.1. Configure

In this step, the configure script will detect the libraries and compiler installed on the system.
It us preferred to configure and compile in a different directory than the top source directory:

ester$ mkdir BUILD

ester$ cd BUILD

ester/BUILD$../configure [OPTION]... [VAR=VALUE]...

The most important configure options are:

–prefix: selects the installation directory for binaries, ester libraries, etc. (default is $HOME/local.

–enable-hdf5: to enable HDF5 support (this requires to have HDF5 library installed on the
system).

–help: prints help and the full list of configure options.

The following variables can be used to tune the ESTER build configuration:

FC: Fortran compiler to be used (e.g., FC=ifort)

CC: C compiler

CXX: C++ compiler

For instance, is you want to compile with Intel compilers and install ESTER in $HOME/ester local,
you should use:

ester/BUILD$../configure --prefix=$HOME/ester_local CC=icc CXX=icpc FC=ifort

5

http://ester-project.github.io/ester/

1.2.2. Build and Install

After the configure step, building and installing ESTER is straightforward:

ester/BUILD$ make && make install

make will build the ESTER’s libraries and binaries. And make install will copy the libraries
into $prefix/lib and binaries into $prefix/bin.

Make sure you add the install directory to you PATH environment variable to be able to
launch ester without specifying the full path to the binary. If you are using bash, you can add
the following line to your .bashrc:

export PATH="$HOME/local/bin:$PATH"

1.2.3. Updating the code

If you chose to download ESTER from the git repository, you can update the code with:

ester$ git pull

and compile the new version by going to your build directory and running make install:

ester$ cd BUILD

ester/BUILD$ make install

1.3. Checking the Installation

To check the installation, a series of test runs is proposed: following the previous example, in the
directory $HOME/ester local/bin, where binaries have been built, just run ester-check-models.
These tests first compute a 1D 5 M⊙ model both with native and hdf5 output and compare the
results to a reference output. A 2D 5 M⊙ model with ω = 0.5ωk is then computed and checked
again for the two kinds of output. The same check is repeated for a 10M⊙ model but with
ω = 0.3ωk.

6

2
Basic usage

The ESTER code calculates the axisymmetric structure and mean flows of an isolated (non-
magnetic) rotating star. It uses realistic physics (tabulated opacities and EOS like those of
OPAL) and completely accounts for the deformation of the star. The mean flows are calculated
self-consistently in the limit of low viscosity, so there is no need to impose an arbitrary pre-
scription for the differential rotation of the star. Surface convection is not included yet, so the
computations are limited to early-type stars, that is to stars with mass typically above ∼ 2M⊙.

Presently, chemical evolution is not included, but it can be faked by tweaking the fractional
abundance of hydrogen in the convective core.

For a detailed description of the physics involved in the models, see Rieutord & Espinosa
Lara 2013 (arXiv:1208.4926, LNP 865, p.49), Espinosa Lara & Rieutord 2013 (arXiv:1212.0778,
in A&A 552, A35) and Rieutord et al. 2016 (), in J. Comp. Phys. vol. 318, 277-304. The code
is still in development, so new functionality will be added in future versions.

To execute the program, use the following syntax:

$ ester command [options]

where command can be:

1d : Calculate the structure of a 1D non-rotating star

2d : Calculate the structure of a 2D rotating star

output : Generate a custom output file

info : Get information about a model file

help : Get help

2.1. Configuration files

The main configuration file is located at $prefix/share/ester/config/star.cfg. This file
contains the main options for the program, which are

• maxit (default 200). Maximum number of iterations. After maxit iterations, the program
exits normally and the output file is saved, even if it has not completely converged.

7

http://arxiv.org/abs/1208.4926
http://arxiv.org/abs/1212.0778
http://userpages.irap.omp.eu/~mrieutord/articles/2016JCP.pdf

• minit (default 1). Minimum number of iterations. It may occur that the value of the error
for the first iteration is not representative. With this parameter we force the solver to do
at least minit iterations. This parameter is superseded by maxit, for example if maxit=5
and minit=10, the solver will do only 5 iterations.

• tol (default 1e-8). The relative tolerance for checking the convergence of the model.

• newton dmax (default 0.5). After one step of the Newton’s method, the maximum relative
change allowed for a variable is given by newton dmax. If necessary the iteration is relaxed
by a parameter h

xN+1 = xN + hδxN

according to this value. This parameter can be used to stabilize the convergence when the
initial estimation is far from the solution.

• output file (default star.out). Name of the output file.

• output mode (default b). Type of the output file b for binary and t for text output.

• verbose (default 1). Level of verbosity, from 0 (quiet) to 4.

All these options can be specified in the file $prefix/share/ester/config/star.cfg in
the form option name=option value (one per line) and in the command line as -option name

option value. The options specified in the command line have precedence over those specified
in the configuration file.

There are some additional options that can be included in the command line:

-input file infile. Use the file infile as the starting point for the iteration.

-i infile. Same as -input file infile.

-o outfile. Same as -output file outfile.

-param file file. Where file contains the parameters of the stellar model to be calculated
(see below).

-p file. Same as -param file file.

-ascii. Same as -output mode t.

-binary. Same as -output mode b.

-noplot. disable runtime plotting

-vn. Same as -verbose n.

2.2. Default values

Default values to be used by star1d or star2d may be set up with the files

- $prefix/share/ester/config/1d default.par

- $prefix/share/ester/config/2d default.par.

8

Element Mass fraction

H X
He3 3.15247417638132e-04*(1.-X-Z)
He4 (1.-X-Z)-X(He3)
C12 Z*1.71243418737847e-01
C13 Z*2.06388003380057e-03
N14 Z*5.29501630871695e-02
N15 Z*2.08372414940812e-04
O16 Z*4.82006487350336e-01
O17 Z*1.95126448826986e-04

Table 2.1: Example of scaled mass fractions of metals for (approximately) to the chemical abun-
dances of Grevesse & Sauval (1998). Note that these ratios are presently used only with the
option -nuc cesam.

In the distribution of ESTER, the proposed default values are such that the star is divided
in 8 domains with 30 points in each domains. Opacities and equation of state are computed
through OPAL tables. These inputs allow the calculation of a 1D 3 M⊙ model (but not only of
course) from scratch. 2D-models cannot be computed from scratch and need a first 1D model to
start with.

2.2.1. Chemical composition

The default chemical composition is the solar mixture of Grevesse & Noels (1993). However, with
the option -mixture added to the input parameters (see Section 2.3), the user can either choose
from a list of input solar compositions or create a unique composition in the same format. These
are located in directory Solar compositions with the keyword for the input argument in the
filename. For example, GS98 ESTER abund input.txt is used when -mixture GS98 is specified.

The content structure of the file contains a header describing the basic contents of the com-
position with the paper reference, followed by two columns: element name, Log abund i.e. the
element and log abundance in base 10, which is the typical format for solar compositions.

Note that when a given mixture is used the metallicity Z is automatically computed to that
of the mixture, however the user can still impose its own Z, which then scales up or down the
metallicity.

In the programme a set of ratios is calculated in the file physics/composition.cpp, to scale
with the input X and Z. These ratios are derived by converting the input abundance composition
from the -mixture argument and uses isotope atomic masses, percentage contributions from
table 6 of Lodders et al. (2003) as well as mass excess from isotopes.data via MESA’s chem
module (version mesa-24.03.1). In Tab. 2.1, we give an example of what was derived within
composition.cpp using GS98 for elements from Hydrogen to Oxygen. All solar compositions
include elements up until Uranium, however the user can decide on any.

9

2.2.2. Opacity tables

The default opacity tables are Solar composition are given in tables GN93hz (Grevesse & Noels,
1993). To utilise other tables, they need to be added and the option -opa mono must be used.
This option utilises large monochromatic opacity tables tabulated for Mombarg et al. (2022).
The Rossland mean opacity is derived from these tables, utilising monochromatic cross sections
and corrections from the OP project (Seaton, 2005). To utilise these tables in ESTER, the option
requires the following abundances defined: H, He, C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Cr,
Mn, Fe and Ni. To reduce computation costs, a precomputed log κR(log T, log ρ) is created for a
mixture in the core (given X and Z input). For a mixture, two tables are computed ±0.05 mass
fraction around the input X value and cubic spline interpolated to create a smaller sub-table
used in the opacity calculations. The fractional abundances are scaled by the input Z relative to
the initial Z value from the input abundance (e.g. for GS98, this would be Z = Z⊙ = 0.0169).

2.3. ester 1d input parameters

The input parameters for ester 1d can be passed in the command line or in a text file specified
with the option -param file file (or just -p file). It can also be used simultaneously, in this case
the parameters given in the command line take precedence over those specified in the file. In
the text file they are written in the form param name=param value and in the command line as
-param name param value. Here is the list of valid parameters

• ndomains. The number of subdomains to use.

• npts. Number of points in each subdomain. It is specified as a comma-separated list. If
only one value is specified, it will be used for all the subdomains, for example:

$ star1d -ndomains 4 -npts 20,20,20,20

is equivalent to

$ star1d -ndomains 4 -npts 20

• M. The mass in units of solar mass.

• X. Mass fraction of hydrogen.

• Z. Mass fraction of metals.

• mixture. Keyword for file of chemical composition mixture.

• Xc. Fraction of the hydrogen abundance present in the convective core. The profile of
hydrogen abundance will be in the form

X(r) =

{
X× Xc if r is in the convective core
X otherwise

If there is no convective core, this parameter is ignored.

• surff. This parameter is used for truncating the stellar model at some point below the
surface. The surface pressure will be surff times the ”real´´ value and the boundary
conditions will be adjusted correspondingly. This parameter is provided only for testing
purposes as it does not produce an accurate representation of the internal layers of the
star. For regular calculations it should be surff=1.

10

• Tc. Initial estimation of the central temperature. To be updated during the calculation.

• pc. Initial estimation of the central pressure. To be updated during the calculation.

• opa. Type of opacity law. Possible values are:

– opal. OPAL opacities from Grevesse & Noels (1993).

– houdek. Houdek’s interpolation of OPAL opacities (smoother), see Houdek and Rogl
(1996), ”On the accuracy of opacity interpolation schemes”, Bull. Ast. Soc. India,
24, 317.

– kramer. Kramer’s opacity.

– mono. Rosseland mean opacities from monochromatic opacity tables (Mombarg et al.,
2022) interpolated to input X and Z.

• eos. Type of equation of state. Possible values are:

– opal. OPAL equation of state.

– ideal. Ideal gas.

– ideal+rad. Ideal gas with radiation.

– freeeos Free-eos https://freeeos.sourceforge.net/

• nuc. Type of nuclear reactions. Possible values are:

– simple. Simplified formulation of pp and CNO cycles.

– cesam. NACRE reaction rates as implemented in the ppcno9 chain of the CESAM
code.

• atm. Type of atmosphere. At the moment, only simple is implemented.

• core convec (default 1). Use 0 to disable core convection.

• min core size (default 0.01). The minimum size of the convective core in fraction of the
polar radius).

If some parameters are omitted, the program will take the value from the input file (set with
-input file or -i) or from the default parameters file in ester/config/1d default.par when
no input file is specified.

2.4. ester 2d input parameters

ester 2d needs a non-rotating 1D model calculated with ester 1d or a previous 2D-model.
The program ester 2d admits the same parameters than ester 1d plus some extra specific

options:

• nth. The number of grid points in latitude.

• nex. Number of radial points in the external domain.

• Omega bk. Angular velocity at the equator in units of the critical velocity Ωc =
√

GM
R3

e
.

• Ekman. Ekman number (gives the amplitude of the meridional circulation).

11

2.5. ester evol input parameters

At the moment ester evol is the poor man recipe for stellar evolution of intermediate mass
stars. It assumes that the convective core is the only part of the star that burns hydrogen. It
also assumes that the star evolves at constant angular momentum. This latter assumption is
therefore inappropriate for massive stars that are known to lose a lot of mass. It should be fine
for stars with masses less than say 8M⊙.

From a ZAMS model, Xc is set to 1 (same hydrogen content in the core and in the envelope).
Usage is

$ ester evol -dXc 0.01 -i M4_04 -o M4_04_evol

where dXc gives the variation of Xc from one step to the next. Output files are numbered
M4 04 evol 0000, M4 04 evol 0001,.. Note that the output files give an evolution but not a
time-evolution since the nuclear clock is not installed.

Note that dXc may also be negative so as to permit an evolution backward in time.

2.6. Some recipes

The typical workflow to calculate a model starts with the calculation of the corresponding 1D
model and using it as an input for star2d. For example, to calculate the structure of a 5M⊙
star with OPAL opacity rotating at with Ω = 0.5Ωc we can do:

$ ester 1d -M 5 -opa opal -o model1d

$ ester 2d -i model1d -nth 24 -Omega_bk 0.5 -o model2d

As the code uses the Newton’s method, it is not possible to converge to a solution if the initial
estimation is too far from it. In this case we can use some intermediate steps. For example, if
we want to calculate the structure of a 2.5M⊙ star rotating with Ω = 0.9Ωc, we can do

$ ester 1d -M 2.5 -o model1d (Start with a non rotating 1D
model)

$ ester 2d -i model1d -nth 24 -Omega_bk 0.5 -o model2d (Using an intermediate value
for rotation)

$ ester 2d -i model2d -nth 32 -Omega_bk 0.9 -o model2d (Calculating the final model)

Executing ester 2d with maxit=0 can be used to interpolate a model without recalculating
it, like

$ ester 2d -i model -npts npts new -nth nth new -o model_interp -maxit 0

Pressing Ctrl-C at any time during the execution of ester 2d will terminate the program,
giving the possibility of finishing the current iteration and write the result in the output file.

2.7. Spatial resolution and memory requirements

The ESTER code uses a direct method to solve the equations of structure of a star. This type
of method involves the factorization of a big matrix that arises from the discretization of the
equations. The main drawback is that memory requirements are high, but the stiffness of the

12

equations prevents the convergence of an iterative (matrix-free) method that would be more
memory efficient.

The memory needed by the calculation can be estimated as:

RAM Used ≳ 25× nd × n2r × n2θ × 8 bytes

where

nd: Number of domains
nr: Number of “radial” points per domain
nθ: Number of points in latitude

Of course, this is a lower limit, the actual memory used can be between ∼10% and ∼50%
higher than this value. This overhead increases with the number of domains and decreases with
the overall number of points. As an example, the following table shows the memory usage for
some configurations (this is only approximated, real values are machine-dependent):

nd nr nθ RAM (estimated) RAM (real) Overhead
8 30 24 791 Mb 986 Mb 25%
8 50 32 3.81 Gb 4.27 Gb 12%
32 25 32 3.81 Gb 4.61 Gb 21%

The first case correspond to the default values and, in most cases, gives a decent representation
of the structure of the star for moderate rotation rates. If more precision is required, we need to
increase the resolution. In particular, to achieve a good precision for high rotation values, the
number of points in latitude should be incremented.

As seen in the second and third cases in the table, the total number of radial points nd×nr can
be increased, without affecting considerably the memory usage, just by increasing the number
of domains. Or equivalently, we can reduce the memory requirements by distributing the radial
points over more domains.

As a rule of thumb, if the number of domains is doubled, keeping the total number of radial
points, the memory required is reduced in a factor

√
2. However this does not necessarily imply

an improvement in precision, as the order of the integration method is also reduced, so it should
be used carefully.

2.7.1. Estimating the precision of the output model

The ESTER code uses spectral methods to calculate the structure of the star. The star is
subdivided in a certain number of domains and, in each domain, the variables are represented
by a double truncated series of orthogonal polynomials in the “radial” (ζ) and “horizontal” θ
directions, for instance

ρ(ζ, θ) =

nr−1∑
i=0

nθ−1∑
j=0

ρijTi(ζ)Pj(cos θ)

where Ti and Pj are Chebyshev and Legendre polynomial respectively. When nr and nθ are high
enough, the spectral representation converges to the exact function. To check the convergence
of the solution ρij , the corresponding normalised spectra for the density (ρ) are shown in the
graphics output of ESTER (see 2.1 and 2.2).

13

Figure 2.1: Example of spectrum plot showing the normalised coefficients ρi in a logarithmic
scale in the graphical output of ester 1d.

Figure 2.2: Example of 2D-spectrum showing the logarithm of the normalised coefficients ρij in
the graphical output of ester 2d.

There are two other indicators that can be used to estimate the quality of the solution:

14

• The virial test. It is the normalised residual resulting from the virial theorem. Ideally, it
should be zero. It is mainly influenced by the internal layers and even with low resolution
we can get very good values ≲ 10−9.

• The energy test. It is the relative difference between the luminosity of the star obtained
as the integral over the volume of the energy generation rate and that obtained as the
integral of the energy flux at the surface. It is highly influenced by the quality of the
solution in the most external layers. Due to the use of tabulated opacities which are not
quite smooth, the energy test will be always higher than 10−5–10−6.

In the following table, we can see examples of the precision achieved for three different
configurations. The three configurations use approximately 1 Gb of RAM, but have different
number of domains. We have used a model with 1600 radial points distributed over 16 domains
and nθ = 48 (approx. 70 Gb of RAM) as a reference to calculate the errors.

nd nr nθ Virial test Energy test ∆ρ/ρ ∆R/R ∆Teff/Teff ∆Ω/Ω
8 30 24 1.848e-09 1.192e-03 1.613e-04 5.157e-05 3.338e-04 3.739e-04
16 21 24 1.851e-11 1.726e-04 1.065e-04 4.702e-05 1.215e-04 4.446e-04
32 15 24 3.377e-10 3.447e-05 2.780e-05 2.021e-06 1.736e-05 3.095e-04

2.8. Generating custom output files

The output files generated by ester 1d and ester 2d contain just the minimal information
necessary to reconstruct the model. However, sometimes a more detailed output is required.
This can be done using ester output. This program reads a template from the standard input
and write the result in the standard output. A typical call would be

$ ester output model file < template file > output file

The template file is a regular text file with the following rules:

• Plain text is copied from the template to the output file. It cannot contain the reserved
characters $ and \.

• Line breaks are ignored. To insert a line break in the output file you have to insert a blank
line in the template.

• Variables from the model are written in the form ${var,fmt}, where var is the code for the
variable (see table below) and fmt is a valid format for the C function printf (e.g. %d for
an integer, %f for float, %e for exponential notation). If fmt is omitted ${var} the variable
is written in binary format.

Table 2.2: Non-exhaustive list of variables codes for the model in
the template file. Dimensional quantities are in cgs

Code Description star1d star2d

nr # of radial points * *
nth # of points in latitude *
ndomains # of domains * *
npts # of radial points in each domain * *

15

xif Position of each domain * *
nex # of radial points in the external domain *
surff Parameter surff (see above) * *
conv # of convective domains * *

Omega Angular velocity at the equator in
√

Pc

ρcR2 *

Omegac Critical angular velocity Ωc =
√

GM
R3

e
in
√

Pc

ρcR2 *

Omega bk Ω/Ωc *
X Hydrogen initial abundance * *
Z Metal abundance * *
Xc Fraction of X in the convective core * *
rhoc Central density (g/cm3) * *
Tc Central temperature (K) * *
pc Central pressure (cgs) * *
M Mass (grams) * *
R (Polar) Radius (cm) * *
Rp Polar radius (cm) *
Re Equatorial radius (cm) *
L Luminosity (erg/s) * *
M/M SUN Mass in solar units * *
R/R SUN (Polar) Radius in solar units * *
Rp/R SUN Polar radius in solar units *
Re/R SUN Equatorial radius in solar units *
L/L SUN Luminosity in solar units * *
r Radius (non-dimensional) * *
rt ∂θr (non-dimensional) * *
rz ∂ζr (non-dimensional) * *
rzt ∂ζθr (non-dimensional) * *
rzz ∂ζζr (non-dimensional) * *
gzz gζζ (non-dimensional) * *
gzt gζθ (non-dimensional) * *
z Radial variable (non-dimensional) * *
th Colatitude (rd) (2D grid) *
rex External radius *
phi Gravitational potential in Pc/ρc * *
phiex Gravitational potential of the external domain *
rho Density (non-dimensional, scaled by ρc) * *
p Pressure (non-dimensional, scaled by Pc) * *
T Temperature (non-dimensional, scaled by Tc) * *

w Angular velocity in
√

Pc

ρcR2 *

G Stream function for the meridional circulation *
Xr Hydrogen abundance X(r, θ) not in use (yet) * *
N2 Squared Brunt-Väisälä frequency (in rd2/s2) * *
opa Type of opacity * *
opacity Rosseland mean opacity (cm2/g) * *
conduct Thermal conductivity (χ) * *

16

dlnxi lnT
(

∂ logχ
∂ log T

)
ρ,µ

* *

dlnxi lnrho
(

∂ logχ
∂ log ρ

)
T,µ

* *

eos Type of equation of state * *
G1 Γ1 * *
cp cp (cgs) * *
del ad ∇ad * *
G3 1 Γ3 − 1 * *
cv cv (cgs) * *
prad Radiation pressure * *

chi T χT =
(

∂ log p
∂ log T

)
ρ,µ

* *

chi rho χρ =
(

∂ log p
∂ log ρ

)
T,µ

* *

d d = χT

χρ
= −

(
∂ log ρ
∂ log T

)
p,µ

* *

eps Energy generation rate per unit mass (cgs) * *
eps pp Energy generation rate per unit mass (pp-chain) * *
eps cno Energy generation rate per unit mass (CNO cycle) * *
Teff Surface effective temperature Teff(θ) (Kelvin) * *
gsup Surface effective gravity surface geff(θ) (cm/s2) * *

D Radial differentiation matrix ∂
∂ζ for 2D models, d

dr
for 1D models

* *

I Radial integration matrix * *
Dex Radial differentiation matrix for the external domain *

Dt Angular differentiation matrix ∂
∂θ for symmetric vari-

ables
*

Dtodd Angular differentiation matrix for antisymmetric
variables

*

Dt2 Second order angular differentiation matrix for sym-
metric variables

*

It Angular integration matrix over µ = cos θ *

For 2D variables, their values at the collocation points are written in the output file in matrix
form. Each line corresponds to a different value of the colatitude θ starting at the equator.
Namely, if nth=8, we have

θ0 = 1.47564028, θ1 = 1.28533144, θ2 = 1.0950334, θ3 = 0.90475753, θ4 = 0.71452525,

θ5 = 0.52438664, θ6 = 0.33449864, θ7 = 0.14572468

while the values of a field are ordered as

p(ζ0, θ0) p(ζ1, θ0) p(ζ2, θ0) · · ·
p(ζ0, θ1) p(ζ1, θ1) p(ζ2, θ1) · · ·
p(ζ0, θ2) p(ζ1, θ2) p(ζ2, θ2) · · ·

...
...

...

ζ being the radial spheroidal coordinate. Similarly, 1D variables can be seen as a column vector

17

and are written in one line in the output file, terminated by a new line character. This behavior
can be inverted by writing this line in the template file

\conf{transpose=1}

After this command, the variables will be written row wise, i.e. one line for each value of the
radial coordinate. Note that it does not affect variables written in binary format, which are
always column wise. To recover the original behaviour we use

\conf{transpose=0}

The original grid does not contain points at the equator nor at the pole. If we want the values
at these points we should write

\conf{equator=1}

\conf{pole=1}

By default, the output uses cgs units. If we want the normalized values used internally by the
code, we simply put

\conf{dim=0}

These control commands can be written anywhere in the template file, in separated lines, affecting
only the code that appears below them.

Let’s see an example.
Template file:

Model of ${M/M_SUN,%.2f} solar masses and R=${R,%e} cm

rotating with Omega=${Omega_bk,%f} Omegac

${nr,%d} radial points and

${nth,%d} latitudinal points

\conf{pole=1}

\conf{equator=1}

r:

${r,%e}

Pressure:

${p,%.14e}

Output file:

Model of 2.50 solar masses and R=1.219822e+11 cm

rotating with Omega=0.900000 Omegac

240 radial points and 32 latitudinal points

r:

0.000000e+00 4.944313e+07 1.971944e+08 4.415355e+08 7.796539e+08 ...

0.000000e+00 4.944313e+07 1.971944e+08 4.415355e+08 7.796539e+08 ...

18

0.000000e+00 4.944313e+07 1.971944e+08 4.415354e+08 7.796533e+08 ...

0.000000e+00 4.944313e+07 1.971944e+08 4.415352e+08 7.796523e+08 ...

[...]

Pressure:

1.61049808835808e+17 1.61048890365891e+17 1.61035199104197e+17 ...

1.61049808835808e+17 1.61048890354742e+17 1.61035198927083e+17 ...

1.61049808835808e+17 1.61048890265707e+17 1.61035197512689e+17 ...

1.61049808835808e+17 1.61048890088480e+17 1.61035194697311e+17 ...

[...]

2.9. Python module

2.9.1. Using ESTER Native format

A basic interface python module for reading the models is included in the distribution. It is
located in ester/python/. The interface between the C/C++ and python variables is based on
SWIG. The C++.variables of ESTER are made visible using the interface file ester.in, which
can be modified by the (advanced) user if necessary. In principles all fields have been made
available. If the ester.in file is modified then a run of make install in the build directory is
necessary.

The variables in the models are defined as numpy arrays. Here is a little example extracted
from the postprocessing directory where various python scripts are available:

#---

import sys

from ester import * # Loads the module

import matplotlib.pyplot as plt

import numpy as np

A=star1d(’model_file’) # Loads a model

or A=star2d(’model_file’) if you use a 2D-model

print A.p[0,0] # Prints the central pressure

plt.plot(A.r[:],np.log10(A.rho[:]))

show() # Needed in non-interactive mode of matplotlib

#---

Other examples are availble, especially meridional cuts like the differential rotation (see
P rot.py). Note that “dotted variables” like opa.k are accessed via A.opacity under python
(see python/ester.in for correspondances of variables).

2.9.2. Using HDF5

If you installed ESTER with HDF5 (Hierarchical Data Format) support, writing/reading to/from
a file ending with .hdf5 or .h5 (-i and -o options) will write/read the file in HDF5 format.

19

http://www.hdfgroup.org/HDF5/whatishdf5.html

You can visualize these files with a variety of tools such as hdfview or h5dump, and you can
easily read them from several languages such as python, Fortran or IDL.

File Format

An ESTER’s model written in HDF5 will have the following structure:

• a group named star attached to the root of the file

• the parameters of the simulation are attributes attached to this group

– for instance ndomains or npts

• the different fields are datasets attached to the /star group

Fields present in ESTER’s models are:

• /star/G: the stream function Φ

• /star/N2: the squared Brunt-Väisälä frequency (in rd2/s2).

• /star/R: radius of domain’s boundary.

• /star/T: temperature.

• /star/X: hydrogen abundance.

• /star/Y: helium abundance.

• /star/Z: metal abundance.

• /star/nuc.eps: nuclear reaction.

• /star/p: pressure.

• /star/phi: gravitational potential.

• /star/phiex: gravitational potential in the external domain.

• /star/r: radius of collocation points.

• /star/rho: density.

• /star/th: colatitude.

• /star/w: angular velocity (ω).

• /star/z: radial variable (ζ).

20

Code Examples

Python: You need to have the h5py package installed.

#---

import h5py

f = h5py.File(’star.hdf5’, ’r’) # open the file ’star.hdf5’ (’r’ = read only)

T = f[’/star/T’][:] # read the temperature field

n = f[’/star’].attrs[’ndomains’] # read the number of domains

print "T (center): " + str(T[0][0])

print "T (equator): " + str(T[0][-1])

#---

Fortran: You need to compile with the h5fc compiler wrapper.

!---

program read_hdf5

use hdf5

implicit none

character*100 :: file_name = "star.hdf5"

integer status, error

integer(hsize_t) :: dims(2)

integer :: nr, nth

integer(HID_T) :: fid, gid, aid, did

double precision, allocatable :: T(:,:)

! init interface

call h5open_f(status)

! open the HDF5 file

call h5fopen_f(file_name, H5F_ACC_RDWR_F, fid, status)

! open the ‘star’ group

call h5gopen_f(fid, "star", gid, error)

! open the ‘nr’ attribute

call h5aopen_f(gid, "nr", aid, error)

! read the attribute

dims(1) = 1

dims(2) = 0

call h5aread_f(aid, H5T_NATIVE_INTEGER, nr, dims, error)

! close the attribute

call h5aclose_f(aid, error)

! open the ‘nth’ attribute

21

call h5aopen_f(gid, "nth", aid, error)

! read the attribute

dims(1) = 1

dims(2) = 0

call h5aread_f(aid, H5T_NATIVE_INTEGER, nth, dims, error)

! close the attribute

call h5aclose_f(aid, error)

print *, "nr: ", nr

print *, "nth:", nth

! allocate memory for the temperature field

allocate(T(nr, nth))

! open the ‘T’ dataset

call h5dopen_f(gid, "T", did, error)

! read the field

dims(1) = nr

dims(2) = nth

call h5dread_f(did, H5T_NATIVE_DOUBLE, T, dims, error)

print *, "T at the center: ", T(1, 1)

print *, "T at the equator:", T(nr, 1)

deallocate(T)

! close dataset, group and file

call h5dclose_f(did, error)

call h5gclose_f(gid, error)

call h5fclose_f(fid, error)

end program

!---

IDL:

;---

fid = h5f_open(’star2d05.h5’) ; open the file

gid = h5g_open(fid,’/star’) ; give the group id to the object star

T = h5d_read(h5d_open(gid, ’T’)); in the group id read the field T

r = h5d_read(h5d_open(gid, ’r’))

th = h5d_read(h5d_open(fid, ’/star/th’))

; in the group id read the parameters nth:

nth = h5a_read(h5a_open_name(gid, ’nth’))

; in the group id read the parameters nr:

22

nr = h5a_read(h5a_open_name(gid, ’nr’))

; make a contour plot of the temperature

x=fltarr(nr,nth) & y=fltarr(nr,nth)

for i=0,nr-1 do begin

for j=0,nth-1 do begin

x(i,j)=r(i,j)*cos(th(j))

y(i,j)=r(i,j)*sin(th(j))

endfor

endfor

print, ’Central temperature: ’, T[0, 0]

contour,T,x,y,nlev=40,xtit=’r’,ytit=’z’

h5f_close, fid ; close the file

end

;---

More on the use of hdf5 data by idl on http://www.exelisvis.fr/docs/routines-102.html

23

3
General structure of the code

3.1. Equations to be solved

3.1.1. With dimensional variables

We consider a lonely rotating star in a steady state. The star is governed by the following
equations for macroscopic quantities:

∆ϕ = 4πGρ (3.1)

ρTv · ∇s = −∇·F + ρε∗ (3.2)

ρv · ∇v = −∇P − ρ∇ϕ+ F v (3.3)

∇·(ρv) = 0 (3.4)

which need to be completed by the equations of microphysics: P ≡ P (ρ, T)
χr ≡ χr(ρ, T)
ε∗ ≡ ε∗(ρ, T)

(3.5)

and the expressions of the viscous force, which could be (for instance)

F v = µ(∆v +
1

3
∇∇·v) (3.6)

for a compressible, constant viscosity fluid, and of the heat flux

F = −χr∇T − χturbT

RM
∇s (3.7)

where χturb is the turbulent diffusion of heat and s the entropy. χr is the radiative conductivity
(usually dominating over the collision one).

This set of equations is completed by boundary conditions (discussed below).

24

3.1.2. Simplifications

We simplify the system of equations by first neglecting entropy advection by meridional cir-
culation, which is justified at low viscosity (e.g. Rieutord 2006 or Rieutord et al. 2016). We
also neglect the convective flux: thus we avoid computing stars with an outer convective enve-
lope where the convective flux is non-negligible. Core convection is simplified in assuming an
isentropic core. Hence, the energy/entropy equation just reads:

−∇·F + ρε∗ = 0 (3.8)

in a radiative zone and

∇s = 0 (3.9)

in the convective core. This equation gives the temperature gradient as a function of the pressure
gradient thanks to the thermodynamics relation

ds =
cp
T
dT − αt

ρT
dP

where

αt = −
(
∂ ln ρ

∂ lnT

)
P

(3.10)

is the isobar expansion coefficient. Hence, (3.9) leads to

∇T =
αt

ρcp
∇P (3.11)

which also means that

∇a =

(
∂ lnT

∂ lnP

)
s

=
Pαt

ρcpT
(3.12)

As for the momentum equation, we split it into its azimuthal and meridional components. The
meridional components of the equation may be reduced to

ρsΩ2es = ∇p+ ρ∇ϕ (3.13)

where s is the cylindrical radial coordinate (e.g. Espinosa Lara & Rieutord, 2013, hereafter
referred to as ELR). The vorticity equation reduces to

s
∂Ω2

∂z
= eφ · ∇p×∇ρ

ρ2
. (3.14)

In these equation, the advection of the ’meridian momentum’ has been neglected in view of the
smallness of the meridional flow.

The meridian circulation is important in the advection of angular momentum as it balances
its diffusion by viscosity. So the eφ component of the momentum equation reads:

∇ · (ρs2Ωu) = ∇ · (µs2∇Ω) (3.15)

where u is the meridional circulation and µ the dynamical viscosity.

25

http://arxiv.org/abs/astro-ph/0608431

3.1.3. Scaled equations

First step is to move scaled equations with scaled quantities. We choose to scale pressure, density
and temperature by their central values and other quantities as follows:

Length scale ≡ polar radius .R
Pressure scale ≡ central pressure . Pc

Density scale ≡ central density . ρc
Temperature scale ≡ central temperature . Tc
Gravitational potential scale . Pc

ρc

Angular velocity scale . 1
R

√
Pc

ρc

Meridional velocity scale . E
√

Pc

ρc

where E is the Ekman number defined as:

E =
µc

ρcΩ0R2
with Ω0 =

√
Pc

R2ρc
. (3.16)

With these scalings, the Poisson equation now reads:

∆ϕ = πcρ (3.17)

where

πc =
4πGρ2cR

2

Pc
(3.18)

Energy equation can be written

∆T +∇ lnχr · ∇T + Λρ
ε∗
χr

= 0 (3.19)

where

Λ =
ρcR

2

Tc
(3.20)

is a dimensional constant since ε∗ and χr are dimensional.
The momentum equation leads to

ρsΩ2es = ∇p+ ρ∇ϕ (3.21)

and the vorticity equation to

s
∂Ω2

∂z
= eφ · ∇p×∇ρ

ρ2
. (3.22)

while angular momentum flux balance reads

u · ∇(s2Ω) =
1

ρ
∇ · (ρs2∇Ω) (3.23)

if we assume constant kinematic viscosity. Mass conservation remains the same

∇·(ρu) = 0 (3.24)

26

3.1.4. Boundary conditions

Before presenting the boundary conditions, we should define the surface of the star: we take as
its definition, the isobar where the polar pressure is

Ps = τs
gpole
κpole

, (3.25)

On this isobar, T = Teff only at the pole. This definition permits a smooth continuity with the
non-rotating models. This surface will be associated with the value ζ = 1 of the pseudo-radial
coordinate (see the chapter on the mapping).

• On the gravitational potential: regularity at the centre of the star and vanishing at
infinity. However, imposing this condition on the surface of the star is cumbersome and
leads to problem of convergence for very flattened stars. Different solutions to this problem
are possible. We can encompass the star within an empty domain whose outer boundary is
a sphere. On this outer sphere the boundary conditions on spherical harmonics components
of the gravitational potential are simply

∂ϕℓ
∂r

+
(ℓ+ 1)ϕℓ

r
= 0

which ensure the matching with a field vanishing at infinity. This solution was applied
successfully in the first versions of the code but is not appropriate when boundary conditions
are implemented in real (θ) space. We now prefer using an outer domain ζ ∈ [1,+∞[that
is mapped to [0, 1[by an appropriate change of variable (see chap. 6) so as to simply set
the potential to zero on the outer boundary of the encompassing outer domain.

• On the velocity, we demand stress-free conditions, namely

v · n = 0 and ([σ]n) ∧ n = 0

where [σ] is the stress tensor. Stars are in the limit of small Ekman numbers and it is
interesting (numerically) not to have to compute the ensuing Ekman layer. However, it
is necessary to take this layer into account for computing the azimuthal velocity, which is
otherwise undefined (see ELR). ELR have shown that the effect of the Ekman layer on the
interior flow can be mimicked by the boundary condition:

µs2ξ̂ · ∇Ω+ ψτ̂ · ∇(s2Ω) = 0 on the surface . (3.26)

where ξ̂ is a unit vector perpendicular to the surface while τ̂ is tangent to it. ψ is the
stream function of the meridional flow.

• The rotation speed of the star must be specified. For this we impose the equatorial
angular velocity as a fraction ωk of the critical angular velocity, namely:

Ω(r = Req, θ = π/2) = ωk

√
GM

R3
eq

where ωk is chosen by the user. We note that in non-dimensional quantities it reads:

ωeq = ωk

√
GM

R3
eqΩ

2
0

= ωk

√
πcm(1− ε)3

4π

27

where we set M = ρcR
3m.

Another way of specifying the angular velocity of the star is to impose its total angular
momentum (see integral constraints).

• On temperature: with the adopted definition of the stellar surface and thanks to a simple
model described in ELR, we can ascribe to the surface of the star a temperature profile,
such that

Tb(θ) =

(
gpole
geff(θ)

κ(θ)

κpole

)1/(n+1)(−χrn · ∇T
σ

)1/4

. (3.27)

where the polytropic index n is set to n = 3. So the temperature boundary condition are
simply:

T (0) = 1 and T (ζ = 1, θ) = Tb(θ)/Tc

3.1.5. Integral constraints

• Mass is an input parameter that is related to the preceding quantities by

M = ρcR
3

∫
(V)

ρdV = ρcR
3m (3.28)

• Angular momentum is another integral quantity that is useful to monitor or to impose:

Lz = ρcR
4

√
Pc

ρc

∫
(V)

r2 sin2 θΩρdV (3.29)

3.1.6. The mapping

The foregoing equations and boundary conditions should be completed by the definition of the
mapping that maps the spheroidal star to a sphere. This thorny subject is described at length
in a separate chapter (see chap. 6).

3.2. The algorithm

3.2.1. Discretization

This system of partial differential equation is solved using a spectral method or more precisely
spectral elements. The star divided in “onion” layers where the vertical direction is discretized
on the Gauss-Lobatto collocation grid (associated with Chebyshev polynomials) and the Gauss-
Legendre collocation grid for the horizontal dependence. This is associated with Legendre poly-
nomials (or axisymmeric spherical harmonics).

Let us recall the ordering of pressure discretized values, namely

28

p(ζ0, θ0) p(ζ1, θ0) p(ζ2, θ0) · · ·
p(ζ0, θ1) p(ζ1, θ1) p(ζ2, θ1) · · ·
p(ζ0, θ2) p(ζ1, θ2) p(ζ2, θ2) · · ·

...
...

...

Scalar fields can therefore be represented by a 2D matrix

pij

where the first index represents the radial variations and the second the angular variations.
Hence, operators acting on ζ apply on ”left” while operators acting on θ apply on right of the
matrix [p]. Hence, we shall write

[∂ζθp] = [Dζ][p][Dθ]

or

(∂ζθp)ij = (Dζ)ikpkl(Dθ)lj

3.2.2. Iterations

We solve the resulting discretized equations using Newton’s iterative scheme, namely, if we write
the problem in the form

F (x) = 0, (3.30)

where the vector function F represents the equations that we want to solve and x is the vector
containing all the independent variables of the problem (pressure, temperature, . . .) including
the shape of the surface which is not known a priori. The equations are linearized using the
Jacobian matrix J of F (x) such that

δF (x) = J (x)δx. (3.31)

The correction to the solution δx(k) at the k-th iteration is calculated solving the linear system

J (x(k))δx(k) = −F (x(k)) (3.32)

and the solution is updated with x(k+1) = x(k) + δx(k).
With an appropriate initial approximation x(0), Newton’s method has quadratic convergence.

In practice, a rotating stellar model can be calculated in approximately 10 iterations starting
with the corresponding non-rotating model.

3.3. Implementation

3.3.1. The vector

The solution vector x is built from the discretized variables as follows
Real ordering of variables:

”Phi”; ”log p”; ”pi c”; ”log T”; ”Lambda”; ”eta”; ”deta”; ”Ri”; ”dRi”; ”Omega”; ”log pc”;
”log Tc”; ”log R”; ”m”; ”ps”; ”Ts”; ”lum”; ”Frad”; ”Teff”; ”gsup”; ”w”; ”G”; ”gamma”;

29

Variable Dependence C++ quantity Comments

ϕ (ζ, θ) Phi Gravitation potential
lnP (ζ, θ) log p Natural log of pressure
lnT (ζ, θ) log T Natural log of temperature
w (ζ, θ) w Differential Rotation
ψ (ζ, θ) G Stream function
Teff θ Teff Effective temperature
gsup θ gsup Effective surface gravity
Ps θ ps surface pressure
Ts θ Ts surface temperature

γ θ gamma γ =
√
gζζ =

√
1 + r2θ/r

2 at the surface
Frad,i (θ, i) Frad F ζ Radiative flux component at each domain boundary
Ri (θ, i) Ri boundaries of the domains
dRi (θ, i) dRi Ri+1 −Ri

ηi eta Polar radius of the domains
dηi deta ηi+1 − ηi
πc pi c Non-dimensional central pressure
Λ Lambda Dimensional constant
Ω Omega Equatorial angular velocity
lnPc log pc log of central pressure
lnTc log Tc log of central temperature
logR log R log of polar radius
m m non-dimensional mass
Lum lum Luminosity

Table 3.1: This table lists all the primary variables contained in x but not in their actual order
in the code.

C++ Variable Dependence (C++ quantity) Comments

T log T Temperature
r Ri, dRi, ηi, dηi radius
rz Ri, dRi, ηi, dηi ∂ζr
log rhoc log pc,log Tc log of central density
rho log T,log p density
opa.xi log T,log p thermal conductivity
opa.k log T,log p opacity
nuc.eps log T,log p nuclear heating
s log T,log p entropy

Table 3.2: This table lists all the secondary variables. They depend on the primary variables
and are used as short-cut in the programming.

30

Note that this list is completed by a list of secondary variable (e.g. Tab. 3.2). These variables
are, in the end, substituted by their expression in the final jacobian. They are used to facilitate
the programming. They are declared as regvar dep. However, declared regvar variables can
be used as shortcuts when they do not increase the size of the Jacobian too much. These are ps
and Ts for instance (see the equation for atmosphere solve atm).

3.3.2. The equations

• Initialization fill

Uses (3.28) and that

m = 2π

∫ 1

0

∫ π

0

ρr2rζdζ sin θdθ

Set the definition of πc as (3.18), and the definition of Ωc, namely the scaled keplerian velocity.
We have

Ωc =
Ωk

Ω0
with Ωk =

√
GM

R3
e

and Ω2
0 = Pc/ρc/R

2.

• Constitutive relations solve definitions

Secondary variables are used to simplify the writing of the Jacobian matrix.
The EOS is written as the dependence of ρ∗ with respect to P∗ and T∗ (∗ quantities are

dimensional). Thus we have:

δρ∗ =
ρ∗
P∗

(
∂ ln ρ

∂ lnP

)
T

δ(PcP) +
ρ∗
T∗

(
∂ ln ρ

∂ lnT

)
P

δ(TcT)

After some manipulations, we get:

δρ

ρ
=

1

χρ
δ lnP +

1

χρ
δ lnPc − δ ln ρc − dpδ lnTc − dpδ lnT

where we introduced

χρ =

(
∂ lnP

∂ ln ρ

)
T

and dp = −
(
∂ ln ρ

∂ lnT

)
P

= χt/χρ

following the definitions of Rogers et al. (1996) and using the thermodynamic triangular relation.

Opacity, radiative conductivity and nuclear heat production depend on ρ and T . So for these
quantities we have the formal relation f = f(ρ, T). We note that radiative conductivity reads:

χr =
16σT 3

3ρκ

so that

lnχr = 3 lnT − ln ρ− lnκ+Cst

31

hence

∂ lnχ

∂ ln ρ
= −1− ∂ lnκ

∂ ln ρ
,

∂ lnχ

∂ lnT
= 3− ∂ lnκ

∂ lnT

where the partial derivatives of lnκ are given by opacity tables.
In the code opa.k is the opacity and opa.xi is the radiative conductivity. We write

δχ =
∂χ

∂ρ∗
δρ∗ +

∂χ

∂T∗
δT∗

Noting that ρ∗ = ρcρ and T∗ = TcT , after some manipulations we get:

δχ =
χ

ρ

∂ lnχ

∂ ln ρ
δρ+ χ

∂ lnχ

∂ ln ρ
δ ln ρc + χ

∂ lnχ

∂ lnT
δ lnT + χ

∂ lnχ

∂ lnT
δ lnTc

where we took into account that ρ and T are non-dimensional. The variation of opacity is then
given by

δκ

κ
= 3δ lnT + 3δ lnTc −

1

ρ
δρ− δ ln ρc −

1

χ
δχ

As far as entropy is concerned, we express its dependence with temperature and pressure:

δs =
cp
T∗
δT∗ +

(
∂s

∂P∗

)
T

δP∗

We note that (
∂s

∂P∗

)
T

= −α
ρ
= −cp∇a

P

where we used (3.10) and (3.12). Thus, after some manipulations we find

δs = cp (δ lnTc + δ lnT −∇aδ lnPc −∇aδ lnP)

• Poisson equation solve poisson

Poisson equation reads

∆ϕ = πcρ with πc =
4πGρ2cR

2

pc

so that its variational expression is

∆δϕ+ (δ∆)ϕ− ρδπc − πcδρ = −(∆ϕ− πcρ)n

where (δ∆) represents the variation of the Laplacian operator due to the change of the metric.
Note that the last domain is void of matter.

Together with Poisson equation, we need to impose the boundary conditions and the interface
conditions at each domain boundary. The boundary conditions are

∇ϕ(0) = 0 and ϕ(∞) = 0

The first condition is equivalent to ∂ζϕ = 0.

32

At the interface of the domains we demand that ϕ and n ·∇ϕ are continuous. The continuity
of the normal component of the gradient implies the continuity of

1

rζ

∂ϕ

∂ζ

Even though we have chosen a continuous rζ-field, we keep the dependence of the interface
condition with rζ in case we would like to test other kinds of mapping (see chapter 6 for more
details).

• Momentum equation solve mov

We start from the meridional components of the (inviscid) momentum equation (3.21), (3.22)
and (3.23). For the angular momentum equation (3.23), we impose boundary condition (3.26).

The equation are solved for the log of the pressure. At the domain interfaces we impose the
continuity of pressure, while at the center the non-dimensional pressure is set to unity.

Let us discuss the implementation of the vorticity equation. We first rewrite (3.21) as

∇p+ ρ∇ϕ− ρsΩ2es = 0

and introduce the eqmov equation as

eqmov=grad(p)+rho*grad(phi)-rho*s*w*w*svec;

from which we derive the equation of vorticity (3.22), symbolically name eq vort, and defined
as

eq vort=(phivec,curl(eqmov/rho));

which means the scalar product of eφ with the curl of the equation eqmov by ρ.
At the interface of the domain, since we are working in the inviscid limit, Ω is not necessarily

continuous. It is continuous only if ρ is continuous (see discussion in Espinosa Lara & Rieutord
2013). In general we only know that pressure is continuous and so is its horizontal derivative.
Thus the continuity of Ω is ruled by the continuity of the horizontal component of ρ∇ϕ−ρsΩ2es
as explained by Eq. (63) in Espinosa Lara & Rieutord (2013). Thus the programme introduces:

ic w=covariant(eqmov-grad(p))(1);

namely the θ (as 1) covariant component of ρ∇ϕ − ρsΩ2es, since Eθ is parallel to ζ = Cst
surfaces.

The vorticity equation, which is called ”w”, is then plugged into the big Jacobian matrix by
just saying that functional variations are on variables ”p”, ”w”, ”rho” and ”r” like

eq vort.add(op,"w","p"); eq vort.add(op,"w","w");

eq vort.add(op,"w","rho"); eq vort.add(op,"w","r");

op->set rhs("w",-eq vort.eval());

Equation ”w” is completed by the interface and boundary conditions that say that:

∂ζΩ(ζ = 0) = 0, at center

33

µs2n · ∇Ω+Gt · ∇(s2Ω) = 0, at surface

Ω(ζ = 1, θ = π/2) = Ωe

where G is the stream function ψ in (3.26). The central boundary condition reads:

op->bc bot2 add l(0,"w","w",ones(1,nth),D.block(0).row(0));

Then we loop on the domains to impose the continuity of ic w

for(int n=0;n<ndomains-1;n++) {
ic w.bc top1 add(op,n,"w","w");

ic w.bc top1 add(op,n,"w","rho");

ic w.bc top1 add(op,n,"w","Phi");

ic w.bc top1 add(op,n,"w","r");

ic w.bc top2 add(op,n,"w","w",-ones(1,nth));

ic w.bc top2 add(op,n,"w","rho",-ones(1,nth));

ic w.bc top2 add(op,n,"w","Phi",-ones(1,nth));

ic w.bc top2 add(op,n,"w","r",-ones(1,nth));

rhs.setrow(j0+map.gl.npts[n]-1,

-ic w.eval().row(j0+map.gl.npts[n]-1)+ic w.eval().row(j0+map.gl.npts[n]));

j0+=map.gl.npts[n];

}

Then we impose the condition on the value of the velocity at equator and the special BC that
suppresses the Ekman layer: (3.26) is inserted as

bc=mu*s*s*(nvec,grad(w))+G*(tvec,grad(s*s*w));

and plugged in the BC of the last domain. So the outer boundary condition on Ω imposes the
angular velocity at equator. Since Ω obeys a first order equation the central condition and its
fixed equatorial value determines Ω everywhere provided we lift the degeneracy Ω2 → Ω2 + f(s)
where f is arbitrary. This is done by (3.26) which also provides the second BC for G the stream
function which obeys a second order PDE. Hence, noting that Ωeq is a linear function of the
values of Ω on the latitudinal grid, BC (3.26) is imposed on all the grid points except the first
one where the equatorial angular velocity is imposed: hence,

q=ones(1,nth);

q(0)=0;

map.leg.eval 00(th,PI/2*ones(1,nth),TT);

bc.bc top1 add(op,ndomains-1,"w","G",q);

bc.bc top1 add(op,ndomains-1,"w","w",q);

bc.bc top1 add(op,ndomains-1,"w","rho",q);

bc.bc top1 add(op,ndomains-1,"w","r",q);

op->bc top1 add r(ndomains-1,"w","w",(1-q),TT);

op->bc top1 add d(ndomains-1,"w","Omega",-(1-q));

rhs.setrow(-1,-q*bc.eval().row(-1)-(1-q)*((w.row(-1),TT)-Omega));

op->set rhs("w",rhs);

34

Of course the equation for Ω is strongly coupled to that of the meridional circulation that is
represented by the stream function G, which is actually the stream function of ρv. Hence, one
introduces

V=curl(G*phivec)/rho;

namely the meridional circulation, and the angular momentum equation:

eq phi=div(rho*s*s*w*V)-div(mu*s*s*grad(w));

Again the equation of angular momentum is plugged into the Jacobian matrix by:

eq phi.add(op,"G","w");

eq phi.add(op,"G","G");

eq phi.add(op,"G","rho");

eq phi.add(op,"G","r");

op->set rhs("G",-eq phi.eval());

Then it is indicated that G is zero at the center and continuous at the interfaces.
For non-dimensional parameters like πc, it is continuous at the domain interface:

1× δπc(1)− 1× δπc(2) = 0

“1” means “part 1 of the interface condition” and “2” means “part 2 of the interface condition”
(see Fig. 3.1).

• Temperature equation solve temp

First, the luminosity at each domain boundary is computed through

Ln = 2πΛ

∫ π

0

∫ ηn

0

ρε∗r
2rζ sin θdθdζ

The definition of the luminosity

L = Λ

∫
(V)

ρε∗dV with Λ =
ρcR

2

Tc

is differentiated and yields

δL− Λ

∫
(V)

(δρε∗ + ρδε∗)dV − δΛ

∫
(V)

ρε∗dV − Λ

∫
(V)

ρε∗δdV = 0

with L continuous at domain interfaces.
Let us examine the coding of one of the terms of this equation, namely

−Λ

∫
(V)

δρε∗dV = −Λ2π

∫ π

0

sin θdθ

∫ ηn+1

ηn

δρε∗r
2rζdζ

This terms needs an operation on the θ-coordinate and on the ζ coordinate. Recalling that left
indices are for the ζi grid and right indices are for the θj grid the discretized form of this term
is like

35

∑
k

(
∑
l

(Dij ∗ Lik ∗ (ε∗r2rζ)kl ∗Rlj))

where D is just a scalar function, here D = −2πΛ, L is the left-operator that does the integration
over ζ and R the right operator that does the integration over θ. In terms of coding it reads:

bc bot2 add lri(n,"lum","rho",-2*PI*Lambda*ones(1,1),

map.gl.I.block(0,0,j0,j0+map.gl.npts[n]-1),map.leg.I 00,

(r*r*rz*nuc.eps).block(j0,j0+map.gl.npts[n]-1,0,-1));

with

D ≡ −2 ∗ PI ∗ Lambda ∗ ones(1, 1)
L ≡ map.gl.I.block(0, 0, j0, j0+ map.gl.npts[n]− 1)

R ≡ map.leg.I00

I ≡ (r ∗ r ∗ rz ∗ nuc.eps).block(j0, j0+ map.gl.npts[n]− 1, 0,−1)) (3.33)

Then we introduce

Frad = −χrE
ζ · ∇T

so the projection of the radiative flux on Eζ , the normal direction of the ζ = Cst surfaces (χr

is the dimensional thermal radiative conductivity). The basic property of this scalar quantity is
that it gives the radiative luminosity when integrated over a surface, namely

L =

∫
(S)

Frad2πr
2rζ sin θdθ

Explicit expression of Frad (a comfort equation, see 3.3.3) is

Frad = −χr

(
gζζ∂ζT + gζθ∂θT

)
so that the functional derivative is given by

δFrad +
Frad

χr
δχr + χr

(
gζζ∂ζδT + gζθ∂θδT + δgζζ∂ζT + δgζθ∂θT

)
= 0

where we have

δgζζ = −2r(gζθ)2δr − 2gζζ

rζ
δrζ −

2gζθ

rζ
δrθ and δgζθ = −2gζθ

r
δr − gζθ

rζ
δrζ −

δrθ
r2rζ

Then we introduce the masks of the convective zones (CZ) qconv and of the radiative zones
(RZ) qrad.

qconv(r) = 1 if r ∈ CZ

qrad(r) = 1 if r ∈ RZ

and of course qconv+qrad=1 ∀r.

36

Convective Radiative Convective Radiative
T=1 T T T ∂ T T ∂ T T ∂ T T T T F ∂ T T T=Ts

Λ Λ Λ F Λ Λ Λ Λ Λ Λ

Radiative Convective Radiative
T=1 ∂ T T ∂ T T ∂ T T T T T F ∂ T T ∂ T T ∂ T T T=Ts

∂ T=0 Λ Λ Λ Λ Λ Λ Λ Λ Λ

Table 3.3: Two tables showing the way boundary and interface conditions are imposed in the
different domains. The left position of a symbol means the continuity is imposed at the bottom
of the domain, right is for Top. Λ is for the continuity of the Λ constant, while F means that
L =

∫
(S)
FraddS. T and ∂T are for the continuity of T and heat flux.

Convective Radiative Convective Radiative

0 1 2 3 4 5 6 7 8 9 10 11

T=1 T ∂ T T ∂ T T ∂ T T ∂ T T T F ∂ T T ∂ T T ∂ T T ∂ T T ∂ T T T=Ts
Λ F Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ

Table 3.4: A case that is working (useful for calibration....).

Hence, the temperature equation can be written

qconv(n · ∇s) + qrad

(
∇·(χr∇T)

χr
+ Λρ

ε∗
χr

)
= 0 (3.34)

where n is the unit vector opposite to local effective gravity. Note that this expression of the
temperature equation assumes that the temperature profile of the convective region is such that
entropy is constant along a vertical. This assumes complete vertical mixing and no horizontal
mixing. If the core is convective, the equation is equivalent to saying that the entropy is the
same all over the core and n · ∇s can be replaced by ∂ζs. Equation (3.34) is then differentiated
functionally.

Then, we need to impose the interface conditions which reduce to demanding the continuity
of T and ∂ζT/rζ . If the interface separates a CZ and a RZ, then ∂ζT is not continuous (in a CZ
temperature is derived from entropy and therefore, if pressure is known, temperature is known;
if entropy is assumed constant there is no differential equation and imposing the continuity of
the fields is sufficient).

Note that the continuity of ∂ζT/rζ is equivalent to the continuity of Frad (provided there
is no chemical jump) since our mapping insures the continuity of rζ . In the last domain the
boundary condition imposes that T = Ts.

The implementation of the boundary and interface conditions is a bit tricky especially if
convective layers appear in the middle. If we follow the propagation of the information (a bit
strange for an elliptic equation like the temperature one!), at the bottom of radiative layer lying
above a convective layer, the temperature gradient is actually only defined by the total flux (if
the boundary between radiative and convective zones is allowed to move then the temperature
gradient converges to the adiabatic one). This is of course the 1D-picture. It is summarized by
the two tables that present two explicit cases.

In 2d the problem is more delicate and we are not able to impose an arbitrary position to
the convection zone, otherwise we cannot distribute the flux in latitude (to be checked!)...

37

• Surface effective gravity solve gsup

Comfort equation (e.g. 3.3.3): Effective gravity is defined as

geff = −∇ϕ+ sΩ2es

Thus from the simplified meridional momentum equation (3.21), we get

geff =
1

ρ
∇p

The variable gsup is defined as gs = −n · geff so as to be positive. Thus, from the equation

gs =
Pc

ρcR

−n · ∇p
ρ

We get the following functional equation

δgs − gsδ lnPc + gsδ ln ρc + gsδ lnR+
gs
ρ
δρ+

Pc

Rρcρ
δ(n · ∇P) = 0 (3.35)

• Surface effective temperature solve Teff

This is a new comfort equation (e.g. 3.3.3). Effective temperature is defined as

σT 4
e = −χn · ∇T

Showing the dimensional and non-dimensional variables we rewrite the previous equality as:

σT 4
e = −χn · ∇T Tc

R

Taking the log and making the functional derivative, we get

4T 3
e δTe − T 4

e δ lnTc + T 4
e δ lnR− T 4

e

χ
δχ+

χTc
σR

δ(n · ∇T) = 0 (3.36)

• Atmosphere solve atm

The atmosphere of the star is described in a simple manner by a polytropic atmosphere as de-
scribed in Espinosa Lara & Rieutord (2013) after Eq. (9). It follows that the surface temperature
Ts(θ) is derived from the pressure field by the polytropic relation P ∝ Tn+1. Namely,

Ts(θ) = Te

(
Ps

Pe

)1/(n+1)

(3.37)

In this expression Ps is the pressure of the isobar on which the boundary conditions are taken.
In Espinosa Lara & Rieutord (2013), it is assumed to be the pressure at the pole given by
τsgpole/κpole but higher values are possible. Pe is the pressure at the top of the atmosphere,
where presumably T = Teff and Pe = τsgeff/κe ∼ τsgeff/κs.

In the simple model, Ps = τsgs/κs, which is translated as

lnPs + lnPc = ln τs + ln gs − lnκs

38

assuming that τs is a fixed quantity, then the variational equation is

δPs/Ps + δ lnPc − δgs/gs + δκs/κs = 0 (3.38)

while for the temperature of the last bounding surface, we translate (3.37) into

lnTs + lnTc = lnTe +
1

n+ 1
(lnPs − lnPe)

and gives the variational equation

δTs/Ts + δ lnTc − δTe/Te −
1

n+ 1
(δPs/Ps + δPe/Pe) = 0 (3.39)

where Pe is approximated by P .
These two equations are also “comfort” equations.

3.3.3. Comfort equations

Basically, some quantities can be introduced to simplify the writing of equations. For instance,
the use the surface effective gravity is convenient. Since it plays a role at the surface only, we can
introduce this quantity as a regular variable without increasing too much the size of the Jacobian.
Such “comfort” variables are different than the dep variables like rho, which do not exist at
all in the final Jacobian. These latter variables are replaced symbolically by their dependance
before the construction of the Jacobian.

The comfort equations do not need a RHS. Let us see an example to explain this point. If
we consider the Emden-like equation

y′′ + Λyn = 0

with some boundary conditions, Λ being an unkown quantity part of the solution, the associated
variational form is

δy′′ + ynδΛ + nΛyn−1δy = −(y′′ + Λyn)

Now, let us introduce a “comfort” equation namely

Y = Λyn

so that the former equation reads

δy′′ + δY = −(y′′ + Λyn)

much simpler indeed, but we need to add the new variational equation

δY − ynδΛ− nΛyn−1δy = 0

that has no RHS.

39

Figure 3.1: Example of discretized-operator matrix, in 1D, with two domains and interface
conditions.

3.3.4. Setting interface and boundary conditions

At the interface of two domains we need to impose the continuity of the functions and of their
normal derivative (when the operators are of second order). The conditions are imposed on the
last grid point of the lower domain and on the first grid point of the upper domain. To be clear
let us take an example of a 1D problem, where at some radius ζ = η we impose

f(ζninterf) = f(ζn+1
interf) and f ′(ζninterf) = f ′(ζn+1

interf)

where the prime is for the derivative. n designates the lower domain and n+1 the upper domain.
Of course ζninterf = ζn+1

interf = η. The equation to be solved may be Laplace equation for instance.
In figure 3.1 we display the structure of the matrix using 20 grid points, with 10 points in each
domain. We use the strong formulation of the differential problem (Rieutord et al., 2016). On
the first line of the matrix we have, for instance, the boundary condition at the bottom of the
first domain. On row 10, the last grid point of the first domain, we impose the continuity of the
solution, so the first dot is just ”1” and the second dot is ”-1”. In the ESTER-nomenclature, the
”1” represents the first part of the interface condition while the ”-1” is the second part. Hence
the ”1” is inserted in the matrix via a bc top1 add operation, while the ”-1” is inserted in the

40

Options Example Argument

bc

top 1

add

ℓ

bc top1 add l (idom,”Eq”,”var”,coef,mat)
r
lri

bot 2
d
ex

Table 3.5: Reading guide for the implementation of boundary conditions.

matrix via a bc top2 add operation.
The second domain, in our example, starts at row 11 by the other interface condition imposing

the continuity of the derivative of the solution. In the ESTER-nomenclature, the lower domain
(n− 1) part is inserted by a bc bot1 add operation, while the actual domain n condition need a
bc bot2 add operation (see figure 3.1). In row 20, we impose the “surface” boundary condition
saying f(ζsurf) = 0, so the dot is just a ”1”.

Meaning of the symbols (but see also Fig. 3.1):

• d ≡ diagonal ≡ essentially multiplication by a function of (ζ, θ).

• ℓ ≡ left operator ≡ Operator on the radial grid

• r ≡ right operator ≡ Operator on the θ-grid

• i ≡ inside ≡ multiplication inside the operator, namely before applying the operator (see
(3.33))

• ex ≡ concerning the exterior (vacuum) domain.

• 1 and 2: If we consider the nth domain, interface conditions with the n− 1-th domain are
set with bot1 and bot2 (bot1 for the n − 1th domain), and interface conditions with the
n+ 1-th domain are set with top1 and top2 (top2 for the n+ 1th domain).

3.3.5. Implementation of Newton’s algorithm

The construction of ESTER’s models follows the following steps:
———————————————————————–

1. Read the initial model or build it (only in 1D)

2. Build the Jacobian matrix

3. LU factorization of the Jacobian matrix

4. CGS solve (or refine) for the correction δx

5. Update x

6. recompute the RHS, F (xk) and the Jacobian matrix

7. Attempt a Conjugate Gradient Squared (CGS) solution to derive the new δx using the
former LU matrices as a preconditionner. Namely, if Lk and Uk are the factors of Jk, the
k + 1 equation is solved with the (split-preconditioned) CGS solver as

41

Jk+1
k Ukδxk+1 = −L−1

k F k+1

where the Jk+1
k = L−1

k Jk+1U
−1
k -matrix is almost diagonal. If the convergence of this

iterative method is less than say N iterates, then the algorithm continues at step 5. N is
chosen such that the N iterations are faster than a LU factorization. If convergence is not
reached, then the algorithm continues on step 3

8. if ∥δx∥/∥x∥ ≤tolerance, then stop.

———————————————————————–

3.4. Modifying the equations

Two kinds of modifications are conceivable: either to modify existing equations or to add new
equations coupled to the existing ones.

3.4.1. Adding a new force or a heat source

Under construction

3.4.2. Adding a new equation and a new variable

Under construction

The code is divided in several libraries. Each library implements one or more classes designed
to handle one particular aspect of the calculation.

• matrix. Matrix algebra.

• numdiff. Implements Gauss-Legendre and multi-domain Gauss-Lobatto numerical differ-
entiation.

• mapping. Defines the mapping in spheroidal coordinates r(ζ, θ).

• solver. Resolution of systems of linear differential equations in 2D.

• physics. Calculation of physical quantities (opacity, equation of state, nuclear reaction
rates).

• star. Provides objects and functions to calculate the structure of a star in 1D and 2D.

• global. Definition of global variables, e.g. physical and mathematical constants.

• graphics. Provides graphical output through pgplot.

• parser. Parsing of configuration files and command-line arguments and file input/output.

42

3.5. Heading towards time evolution

3.5.1. Simple scheme for hydrogen burning

Step 1

During hydrogen burning, heat is basically produced by the transformation of protons into alpha
particles (4He nuclei) and thus, not to bother with the nuclear reaction network, we can write

dX

dt
= −4mpε

Q

where mp is the proton mass, and

Q = (4mp −mHe)c
2 = 4.3× 10−12 J

is the energy released by the transformation of the 4 protons1. We thus deduced the discretized
time evolution for lnX during ∆t, namely

lnX +
4mpε∆t

QX
= lnXn−1 (3.40)

where the LHS variables refer to the time-step n. The variational form for solving (3.40) is

δ lnX +
4mpε∆t

QX

[(
∂ ln ε

∂ lnT

)
δ lnT +

(
∂ ln ε

∂ ln ρ

)
δ ln ρ+

(
∂ ln ε

∂ lnX
− 1

)
δ lnX

]
= RHS (3.41)

where

RHS = lnXn−1 −
(
lnX +

4mpε∆t

QX

)
we note that when the CNO-cycle dominates the third term in [...] can be neglected. Indeed,
ε = εpp + εcno and εpp ∝ X2 while εcno ∝ X, it follows that

∂ ln ε

∂ lnX
− 1 =

εpp
ε

which can be neglected at high temperature.
So as a first step and for early-type stars we adopt

δ lnX +
4mpε∆t

QX

[(
∂ ln ε

∂ lnT

)
δ lnT +

(
∂ ln ε

∂ ln ρ

)
δ ln ρ

]
= RHS (3.42)

In the convective core, we assume a uniform distribution of X, namely

X =
1

Mcore

∫
(V)

XρdV

1ε/Q is the rate of He generation per unit mass and 4ε/Q the number of protons that disappear per unit
mass and time. Thus 4mHε/Q is the number of kg of H that disappear per kg of matter and per second; this is
precisely Ẋ.

43

Its evolution is described (basically) by

dX

dt
= −4mp

Q

Lcore

Mcore
(3.43)

so that we need to solve

X +
4mp

Q

Lcore

Mcore
= Xn−1

As a first step, we solve for a variational formulation neglecting the core mass variation, namely

δX +
4mp

QMcore

∫ ζc

0

δ(ρεr2rζ)dζ = Xn−1 −
(
X +

4mp

Q

Lcore

Mcore

)
in 1D.

Some numerical values for orders of magnitude

Simplifying the expression given by Kippenhahn et al. (2012), we take

εCNO = 8.24 1025ρXXCNOT
−2/3
9 e−15.231/T

1/3
9 cgs

Let’s take XCNO ≃ Z/2 ≃ 0.01, X = 0.7, Tc = 2.76×107K, ρc = 21.3 g/cm3 (from a 1D ESTER
model of a 5M⊙ ZAMS star). Then,

εc = 1.74× 104 erg/s/g

Hence, if ∆t = 1Myr, then

4mpεc∆t

Q
= 0.085

So the decrease is a little more than 10% (of 0.7) every million years for this star.

Step 2

While the star consumes its hydrogen it shrinks thus generating a quasi-steady flow towards the
center (if no rotation). Let’s consider this case first.

In the Euler formulation (unlike lagrangian) we have to include the velocity field

∂X

∂t
+ v · ∇X = −fε (3.44)

1D-case:

∂X

∂t
+ Vr

∂X

∂r
= −fε (3.45)

If we discretize in time

Xn+1 −Xn +∆tVr
∂Xn+1/2

∂r
+ fε = 0 (3.46)

In 1D, Vr is just the motion of the mass-coordinate. In ESTER, mass-coordinate does not exist,
domains are attached either to pressure or temperature, not to mass. We need the radial velocity
that insures mass-conservation:

44

∂ρ

∂t
+∇·ρv = 0 =⇒ vr = − 1

r2ρ

∂

∂t

∫ r

0

r2ρdr

or

vr(r) = − 1

4πr2ρ

(
∂M

∂t

)
r

So to estimate vr we need to evaluate the mass function M(r, t) at successive times. So if
∆M =M ′(ri)−M(ri) then

vr(r) = − 1

4πr2ρ

∆M

∆t

45

4
Matrix Algebra. The matrix library.

To facilitate the work with matrices in C++, the matrix library provides two classes:

• matrix for regular matrices

• matrix_block_diag for block diagonal matrices

The function prototypes are defined in the header file matrix.h.

4.1. Matrix creation and manipulation

Regular matrices are defined as objects of the matrix class. For example, the sentence:

matrix a(3,4);

creates a matrix a with 3 rows and 4 columns. If the size is not specified,

matrix a;

a 1x1 matrix is created. The size of the matrix can be modified using the method dim

a.dim(3,4);

or, if the total number of elements does not change, using redim

a.redim(1,12);

With redim the element values are also preserved. The number of rows and columns of a matrix
object can be retrieved using the methods nrows() and ncols(). For example

int n,m;

matrix a(3,4);

n=a.nrows();

m=a.ncols();

46

in this example n = 3 and m = 4.
The elements of the matrix can be indexed using parenthesis. Note that, as regular C arrays,

the index of the first element is 0. There are also methods for extracting parts of the matrix.
Let’s see an example

matrix a(3,3),row,col,block;

double elem;

a(0,0)=1;a(0,1)=2;a(0,2)=3;

a(1,0)=4;a(1,1)=5;a(1,2)=6;

a(2,0)=7;a(2,1)=8;a(2,2)=9;

elem=a(1,2); // elem=6

row=a.row(1); // Extracts the second row

col=a.col(0); // Extracts the first column

block=a.block(0,1,1,2); // Extracts the block (0-1,1-2)

After running the example, the contents of the different matrices will be

a =

 1 2 3
4 5 6
7 8 9



row =
(
4 5 6

)
col =

 1
4
7

 block =

(
2 3
5 6

)
We can also insert parts of the matrix using the methods setrow, setcol and setblock.

matrix a(3,3),b;

b=ones(1,3); // Creates a 1x3 array of all ones

a.setrow(0,b);

b=ones(3,1);

a.setcol(2,b);

b=ones(2,3);

a.setblock(1,2,0,2,b);

Negative indices are interpreted starting from the end of the matrix. For example a.row(-1)
returns the last row of the matrix a.

Indexing with only one parameter is also possible, being a(i,j) equivalent to a(j*a.nrows()+i).
This makes sense when working with row or column vectors, if we define

matrix row(1,5),col(5,1);

then row(i) is equivalent to row(1,i) and col(i) is equivalent to col(i,1).

47

4.2. File input/output

The method write writes a matrix in a file, the syntax is

write(FILE *fp, char mode)

Here, mode can be ’t’ for text output or ’b’ for binary output. Default is ’t’. The matrix
is written in column-wise order, i.e. each line represents a column of the matrix. When called
without arguments write(), it writes the matrix in the standard output.

To read a matrix from a file we use the method read.

read(int nrow, int ncol, FILE *fp, char mode)

Where we must specify the size of the matrix.
In the following example, we will write a matrix to a file and read it again.

#include<stdio.h>

#include"matrix.h"

int main() {

FILE *fp;

matrix a(2,3);

a(0,0)=1;a(0,1)=2;a(0,2)=3;

a(1,0)=4;a(1,1)=5;a(1,2)=6;

// Write the matrix to a file in binary mode

fp=fopen("matrix.dat","wb");

a.write(fp,’b’);

fclose(fp);

// Read the matrix from file

fp=fopen("matrix.dat","rb");

a.read(2,3,fp,’b’);

fclose(fp);

return 0;

}

We can write a matrix on the screen in a more convenient format using write_fmt. For the
previous example the sentence

a.write_fmt("%.2f");

will produce the following output

1.00 2.00 3.00

4.00 5.00 6.00

48

4.3. Operators

Element-wise operators for the matrix class:

a=b Assignment
a+b Addition
a-b Subtraction
a*b Element-wise multiplication
a/b Element-wise division
a+=b Equivalent to a=a+b

a-=b Equivalent to a=a-b

a*=b Equivalent to a=a*b

a/=b Equivalent to a=a/b

+a Unary plus
-a Unary minus
a==b Comparison: Equal to
a!=b Comparison: Not equal to
a>b Comparison: Greater than
a<b Comparison: Less than
a>=b Comparison: Greater than or equal to
a<=b Comparison: Less than or equal to
a&&b Logical AND
a||b Logical OR

The operands a and b can be either matrices or scalars. Element-wise operators are performed
element by element. For example if we define

c=a*b;

the elements of the new matrix c will be

c(i,j)=a(i,j)*b(i,j)

obviously, the two matrices must have the same size. There is one exception, when one or both
of the dimensions are one, for example if a is (n,m) and b is (1,m) the matrix c will be (n,m)
with elements

c(i,j)=a(i,j)*b(j)

also if a is (n,1) and b is (1,m), c will be (n,m) with

c(i,j)=a(i)*b(j)

The comparison operator == compares two matrices element by element, so the result is a
new matrix whose elements are 1 if the corresponding elements of a and b are equal or 0 if they
are different. If we want to know if two matrices are completely equal, we can use the function
isequal(a,b) that returns 1 if a and b are the same and 0 otherwise.

49

Matrix product are indicated with a comma “ , ”. The product of matrices a and b are
expressed as:

c=(a,b);

The operation should be put in parentheses when necessary to avoid ambiguity. Note that the
operator “ , ” in C has the lowest precedence, for example

(2*a,b+c,d)

is equivalent to

((2*a) , ((b+c) ,d))

4.4. Block diagonal matrices

Another type of object included in the library are the block diagonal matrices. An object of this
class has the following structure

M =


M0 0 · · · 0
0 M1 · · · 0
...

...
. . .

...
0 0 · · · Mn−1


where the Mi are also matrices. Although the definition of a block diagonal matrix requires the
blocks Mi to be square, in the current implementation they are allowed to have any size.

A block diagonal matrix is defined using the sentence

matrix_block_diag D;

An optional argument can be included to specify the number of blocks in the matrix (default is
1)

matrix_block_diag D(4);

Alternatively, the number of blocks can be changed using the sentence

D.set_nblocks(4);

In order to access the different blocks, we use the method block(int i), for exmaple

matrix_block_diag D(3);

matrix a,b;

a=ones(2,2);

D.block(0)=a;

b=D.block(0);

Individual elements can also be indexed using parentheses D(i,j), as with regular matrices.
A number of operators are defined in the matrix_block_diag class:

50

Operator Operands type Return type Description
a=b matrix_block_diag matrix_block_diag Assignment
a+b matrix_block_diag matrix_block_diag Addition
a-b matrix_block_diag matrix_block_diag Subtraction
+a matrix_block_diag matrix_block_diag Unary plus
-a matrix_block_diag matrix_block_diag Unary minus

a*b

matrix_block_diag matrix_block_diag

Element-wise multiplication
matrix_block_diag & matrix matrix_block_diag

matrix & matrix_block_diag matrix_block_diag

matrix_block_diag & double matrix_block_diag

double & matrix_block_diag matrix_block_diag

a/b
matrix_block_diag & matrix matrix_block_diag

Element-wise division
matrix_block_diag & double matrix_block_diag

(a,b)
matrix_block_diag matrix_block_diag

Matrix productmatrix_block_diag & matrix matrix_block_diag

matrix & matrix_block_diag matrix_block_diag

For element-wise operators between matrix_block_diag objects, both objects must have
exactly the same structure. Matrix product is also performed block by block, so the structure of
the operands must be compatible.

A matrix_block_diag object can be converted in a matrix object using type casting.

matrix a;

matrix_block_diag D;

a=(matrix) D;

4.5. Reference

Matrix manipulation

dim(n,m)
redim(n,m)
nrows()
ncols()
row(n)
col(n)
block(n1,n2,m1,m2)
block step(n1,n2,nstep,m1,m2,mstep)
setrow(n,A)
setcol(n,A)

setblock(n1,n2,m1,m2,A)
setblock step(n1,n2,nstep,m1,m2,mstep,A)
transpose()
fliplr()
flipud()
data()
swap()
zero(n,m)

File input/output

write(fp,mode)
read(n,m,fp,mode)
write fmt(format,fp)

51

Special matrices

eye(n)
zeros(n,m)
ones(n,m)
random matrix(n,m)

vector(x0,x1,n)
vector t(x0,x1,n)

Matrix functions

max(A)
min(A)
sum(A)
mean(A)
max(A,B)
min(A,B)

exist(A)
isequal(A,B)
solve(b)
inv()

Mathematical functions

cos(x)
sin(x)
tan(x)
acos(x)
asin(x)
atan(x)
atan2(y,x)
cosh(x)
sinh(x)
tanh(x)

exp(x)
log(x)
log10(x)
sqrt(x)
abs(x)
pow(x,y)
round(x)
floor(x)
ceil(x)

Block diagonal matrices

set nblocks(n)
block(n)
nblocks()
nrows()
ncols()

row(n)
transpose()
eye(D)

4.5.1. A note about methods and functions

The subroutines are divided in two types: functions and methods. Contrary to functions, meth-
ods belong to the object and they are called using a different syntax. For example if met is a
method of the object a that takes one argument b and returns a value c, we use the sentence

c=a.met(b)

The same subroutine implemented as a function will be

c=met(a,b)

52

When using pointers, the dot is replaced by ->, then if p=&a the sentence above is equivalent
to

c=p->met(b)

The parenthesis are needed even if the method takes no arguments, i.e. a.method_without_args().

4.5.2. Matrix manipulation

dim(n,m)

Type: Method

Inputs: n (int): Number of rows
m (int): Number of columns

Output : Reference to current object

Description: Changes the dimensions of the matrix object.

redim(n,m)

Type: Method

Inputs: n (int): Number of rows
m (int): Number of columns

Output : Reference to current object

Description: Changes the dimensions of the matrix object. The total number elements
must not change. Element values are preserved.

nrows()

Type: Method

Inputs: None

Output : int

Description: Returns the number of rows of the matrix.

ncols()

Type: Method

Inputs: None

Output : int

Description: Returns the number of columns of the matrix.

row(n)

Type: Method

Inputs: n (int): Row index

Output : matrix

Description: Extracts row n from matrix.

53

col(n)

Type: Method

Inputs: n (int): Column index

Output : matrix

Description: Extracts column n from matrix.

block(n1,n2,m1,m2)

Type: Method

Inputs: n1 (int): First row index
n2 (int): Last row index
m1 (int): First column index
m2 (int): Last column index

Output : matrix

Description: Extracts the block contained between the rows n1 and n2 and the columns
m1 and m2.

block step(n1,n2,nstep,m1,m2,mstep)

Type: Method

Inputs: n1 (int): First row index
n2 (int): Last row index
nstep (int): Row increment
m1 (int): First column index
m2 (int): Last column index
mstep (int): Column increment

Output : matrix

Description: Extracts the block contained between the rows n1 and n2 and the columns
m1 and m2 using increments nstep and mstep.

setrow(n,A)

Type: Method

Inputs: n (int): Row index
A (matrix)

Output : Reference to current object

Description: Inserts matrix A at row n.

setcol(n,A)

Type: Method

Inputs: n (int): Column index
A (matrix)

Output : Reference to current object

Description: Inserts matrix A at column n.

54

setblock(n1,n2,m1,m2,A)

Type: Method

Inputs: n1 (int): First row index
n2 (int): Last row index
m1 (int): First column index
m2 (int): Last column index
A (matrix)

Output : Reference to current object

Description: Inserts matrix A between the rows n1 and n2 and the columns m1 and m2.

setblock step(n1,n2,nstep,m1,m2,mstep,A)

Type: Method

Inputs: n1 (int): First row index
n2 (int): Last row index
nstep (int): Row increment
m1 (int): First column index
m2 (int): Last column index
mstep (int): Column increment
A (matrix)

Output : Reference to current object

Description: Inserts matrix A between between the rows n1 and n2 and the columns m1
and m2 using increments nstep and mstep.

transpose()

Type: Method

Inputs: None

Output : matrix

Description: Returns the tranpose of the object. Does not modify the original matrix.

fliplr()

Type: Method

Inputs: None

Output : matrix

Description: Flip columns in the left-right direction. Does not modify the original matrix.

flipud()

Type: Method

Inputs: None

Output : matrix

Description: Flip rows in the up-down direction. Does not modify the original matrix.

55

data()

Type: Method

Inputs: None

Output : Pointer to double

Description: Returns a pointer to the first element in the matrix. The elements are stored
consecutively in column order.

swap()

Type: Method

Inputs: matrix

Output : None

Description: Swaps the contents of the current matrix object and the one used as argument.

zero(n,m)

Type: Method

Inputs: n (int): Number of rows
m (int): Number of columns

Output : None

Description: Creates a nxm matrix of all zeros. Note that a.zero(n,m) is equivalent to
a=zeros(n,m) but avoids the creation of an intermediate object, saving mem-
ory for large matrices.

4.5.3. File input/output

write(fp,mode)

Type: Method

Inputs: fp (FILE *): File pointer (optional, default=stdout)
mode (char): Write mode (optional, default=’t’)

Output : int

Description: Writes a matrix in the file pointed by fp in text mode (mode=’t’) or binary
mode (mode=’b’). The matrix is written in column order. Returns 1 on
success, 0 otherwise.

56

read(n,m,fp,mode)

Type: Method

Inputs: n (int): Number of rows
m (int): Number of columns
fp (FILE *): File pointer
mode (char): Write mode (optional, default=’t’)

Output : int

Description: Reads a nxm matrix from the file pointed by fp in text mode (mode=’t’) or
binary mode (mode=’b’). The matrix is read in column order. Returns 1 on
success, 0 otherwise.

write fmt(format,fp)

Type: Method

Inputs: format (char *): Format string
fp (FILE *): File pointer (optional, default=stdout)

Output : None

Description: Writes a matrix in the file pointed by fp using given format. The matrix is
ordered such that each line represents a row.

4.5.4. Special matrices

eye(n)

Type: Function

Inputs: n (int): Number of rows

Output : matrix

Description: Returns the nxn identity matrix.

zeros(n,m)

Type: Function

Inputs: n (int): Number of rows
m (int): Number of columns

Output : matrix

Description: Returns a nxm matrix of all zeros.

ones(n,m)

Type: Function

Inputs: n (int): Number of rows
m (int): Number of columns

Output : matrix

Description: Returns a nxm matrix of all ones.

57

random matrix(n,m)

Type: Function

Inputs: n (int): Number of rows
m (int): Number of columns

Output : matrix

Description: Returns a nxm matrix with random values between 0 and 1.

vector(x0,x1,n)

Type: Function

Inputs: x0 (double): Minimum value
x1 (double): Maximum value
n (int): Number of elements

Output : matrix

Description: Returns a row vector with n equally spaced elements between x0 and x1.

vector t(x0,x1,n)

Type: Function

Inputs: x0 (double): Minimum value
x1 (double): Maximum value
n (int): Number of elements

Output : matrix

Description: Returns a column vector with n equally spaced elements between x0 and x1.

4.5.5. Matrix functions

max(A)

Type: Function

Inputs: A (matrix)

Output : double

Description: Returns the maximum value.

min(A)

Type: Function

Inputs: A (matrix)

Output : double

Description: Returns the minimum value.

58

sum(A)

Type: Function

Inputs: A (matrix)

Output : double

Description: Returns the sum of the matrix elements.

mean(A)

Type: Function

Inputs: A (matrix)

Output : double

Description: Returns the mean value of the matrix elements.

max(A,B)

Type: Function

Inputs: B (matrix)
B (matrix)

Output : matrix

Description: Compares the matrices a and b and returns a new matrix C containing the
larger values of each pair of elements C(i,j)=max(A(i,j),B(i,j)).

min(A,B)

Type: Function

Inputs: A (matrix)
B (matrix)

Output : matrix

Description: Compares the matrices A and B and returns a new matrix C containing the
smaller values of each pair of elements C(i,j)=min(A(i,j),B(i,j)).

exist(A)

Type: Function

Inputs: A (matrix)

Output : int

Description: Returns 1 if any of the elements of A is not zero, 0 otherwise. It is often used
in constructions of type if (exist(condition))..., where condition is a
valid comparison. For example if (exist(A<0))....

59

isequal(A,B)

Type: Function

Inputs: A (matrix)
B(matrix)

Output : int

Description: Returns 1 if matrices A and B contain exactly the same values, 0 otherwise.

solve(b)

Type: Method

Inputs: b (matrix)

Output : matrix

Description: x=A.solve(b) solves the linear system Ax = b and returns matrix x.

inv()

Type: Method

Inputs: None

Output : matrix

Description: Returns the inverse of the current matrix object. The original matrix is not
modified.

4.5.6. Mathematical functions

cos(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns the cosine of x. x must be expressed in radians.

sin(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns the sine of x. x must be expressed in radians.

tan(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns the tangent of x. x must be expressed in radians.

60

acos(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns the arc cosine of x in radians.

asin(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns the arc sine of x in radians.

atan(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns the arc tangent of x in radians.

atan2(y,x)

Type: Function

Inputs: y (matrix or double)
x (matrix or double)

Output : matrix

Description: Returns the arc tangent of y/x in radians. Uses the sign of y and x to
determine the quadrant.

cosh(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns the hyperbolic cosine of x. x must be expressed in radians.

sinh(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns the hyperbolic sine of x. x must be expressed in radians.

61

tanh(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns the hyperbolic tangent of x. x must be expressed in radians.

exp(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns ex.

log(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns log(x).

log10(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns log10(x).

sqrt(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns
√
x.

abs(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Returns the absolute value of x.

62

pow(x,y)

Type: Function

Inputs: x (matrix or double)
y (matrix or double)

Output : matrix

Description: Returns xy.

round(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Rounds the elements of x to the nearest integer.

floor(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Rounds the elements of x to the nearest integer below the current value.

ceil(x)

Type: Function

Inputs: x (matrix)

Output : matrix

Description: Rounds the elements of x to the nearest integer above the current value.

4.5.7. Block diagonal matrices

set nblocks(n)

Type: Method

Inputs: n (int): Number of blocks

Output : Reference to current object

Description: Changes the number of blocks of the matrix block diag object.

block(n)

Type: Method

Inputs: n (int): Block number

Output : Reference to matrix

Description: Returns a reference to the matrix in the block number n.

63

nblocks()

Type: Method

Inputs: None

Output : int

Description: Returns the number of blocks.

nrows()

Type: Method

Inputs: None

Output : int

Description: Returns the total number of rows.

ncols()

Type: Method

Inputs: None

Output : int

Description: Returns the total number of columns.

row(n)

Type: Method

Inputs: n (int): Row number

Output : int

Description: Extracts the row n.

transpose()

Type: Method

Inputs: None

Output : matrix block diag

Description: Calculates the transpose.

eye(D)

Type: Function

Inputs: D (matrix block diag)

Output : matrix block diag

Description: Returns the identity block matrix with the same structure as D.

64

5
Numerical differentiation

5.1. Introduction

Numerical differentiation refers to the algorithms for estimating the derivative of a function using
only its values at certain evaluation points.

The simplest method for evaluating the derivative is the finite difference method. Given a
function f sampled at points xi (i = 0, . . . , n− 1), its derivative is estimated using the formula

f ′(xi) =
f(xi+1)− f(xi)

xi+1 − xi

For equally spaced points xi+1 − xi = h and the formula becomes

f ′(xi) =
f(xi+1)− f(xi)

h

There are some variations of the finite difference formula, as for example the central difference

f ′(xi) =
f(xi+1)− f(xi−1)

2h

When solving differential equations, it is a good idea to write this expression in matrix form:

f ′(x0)
f ′(x1)
f ′(x2)
f ′(x3)

...
f ′(xn−3)
f ′(xn−2)
f ′(xn−1)


=

1

2h



−2 2 0 0 · · · 0 0 0
−1 0 1 0 · · · 0 0 0
0 −1 0 1 · · · 0 0 0
0 0 −1 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 1 0
0 0 0 0 · · · −1 0 1
0 0 0 0 · · · 0 −2 2





f(x0)
f(x1)
f(x2)
f(x3)

...
f(xn−3)
f(xn−2)
f(xn−1)


or, in more compact form

f ′(xi) =

n−1∑
j=0

Dijf(xj)

65

where Dij is the differentiation matrix.
The finite difference method has order 2, which means that the error in the estimation of the

derivative is proportional to h2. In fact, it is possible to construct higher order methods using
more points to estimate the derivative. As a rule of thumb, the order of the method is at least
equal to the number of points used in the estimation of the derivative.

Unfortunately, high order methods using equally spaced points are affected by the Runge’s
phenomenon. Indeed, finite difference formulas of order n are obtained by interpolating the func-
tion between the points of interest using a polynomial of degree n−1. One of the main problems
of polynomial interpolation using polynomials of high degree is the apparition of oscillations
near the edges of the interval between the interpolation points. The amplitude of the oscillations
increase with the degree of the polynomial and quickly degrades the derivative estimation for
high order methods. This effect is known as the Runge’s phenomenon.

Collocation or pseudospectral methods attempt to suppress the Runge’s phenomenon by
choosing a set of non-equally spaced points called collocation points.

5.1.1. Collocation/Pseudospectral methods

Collocation methods are high order methods for estimating the derivative of a function knowing
its values at certain points called collocation points. The position of this points is different for
each collocation method and is designed to suppress the Runge’s phenomenon. A pseudospectral
method with n points has order 2n.

Each particular collocation method is associated with a family of orthogonal functions Pl(x).
This functions form a basis so, any arbitrary function ϕ(x) can be expressed as a linear combi-
nation of the basis functions

ϕ(x) =

∞∑
l=0

alPl(x)

In practice, we will work with a finite discretization using n points, so the expansion is truncated
to use only n basis functions, the fuction ϕ(x) is then approximated by

ϕ(n)(x) =

n−1∑
l=0

ϕlPl(x)

For regular functions and a well-adapted choice of the basis functions, collocation methods have
exponential convergence, which means that the error in the approximation decreases exponen-
tially with the the number of basis functions n.

The functions Pl(x) are orthogonal against some scalar product ⟨Pl, Pm⟩ = δlm, then the
coefficients on the expansion of ϕ(x) can be calculated as

ϕl = ⟨ϕ(x), Pl(x)⟩

For each family of basis functions it exists a formula of gaussian quadrature for calculating this
scalar product, then

ϕl =

n−1∑
j=0

wjPl(xj)ϕ(xj)

where xj and wj are the nodes and weights of the corresponding gaussian quadrature. Note that
xj are the collocation points. The estimation of the first derivative at the collocation points can

66

be obtained as

ϕ′(xi) =

n−1∑
l=0

ϕlP
′
l (xi)

=

n−1∑
l=0

n−1∑
j=0

wjPl(xj)ϕ(xj)

P ′
l (xi)

=

n−1∑
j=0

(
n−1∑
l=0

wjPl(xj)P
′
l (xi)

)
ϕ(xj)

=

n−1∑
j=0

Dijϕ(xj)

where Dij =

n−1∑
l=0

wjPl(xj)P
′
l (xi) is the differentiation matrix. We see that the derivative of a

discretized function can be calculated by doing a matrix product.

Φ′ = DΦ

Similarly, the second derivative will be

Φ′′ = DDΦ

5.1.2. Relation with spectral methods

Collocation methods are intimately related with spectral methods and share most of their prop-
erties. The main difference is that in spectral methods we work with the coefficients ϕl in the
expansion of the functions contrarily to collocation methods that deal directly with the values
of the function at the collocation points. This has a clear advantage when solving differential
equations with variable coefficients. For example, the equation

ϕ′(x) + a(x)ϕ(x) = b(x)

will be discretized using spectral methods as∑
m

⟨Pl, P
′
m⟩ϕm +

∑
m,k

⟨Pl, PmPk⟩ amϕk = bl

While the first product ⟨Pl, P
′
m⟩ use to be easy to calculate, this is not the case for the second

one ⟨Pl, PmPk⟩. By contrast, for collocation methods the discretization is just∑
j

Dijϕ(xj) + a(xi)ϕ(xi) = b(xi)

It is possible to pass from one representation to the other using projection matrices. To get
the spectral coefficients of a function ϕ, we multiply by the projection matrix Pij .

ϕl =

n−1∑
j=0

Pliϕ(xi)

67

where Pli = wiPl(xi). To recover the values at the collocation points we do

ϕ(xi) =

n−1∑
l=0

P−1
il ϕl

where P−1
il = Pl(xi) is the matrix inverse of Pli.

5.1.3. Multi-domain

One of the main drawbacks of pseudospectral collocation methods is that they do not deal cor-
rectly with non-regular functions. If the function that we want approximate has discontinuities,
even in its first derivatives, the exponential convergence is lost and the approximated function
can show oscillations around the discontinuity. This is known as the Gibbs phenomenon.

There are multiple ways to deal with this problem, one of them is to use a multi-domain
approach. It consists in dividing the integration domain in multiple subintervals. A division
is placed at the points where there is a discontinuity in the function. So now the function is
continuous in each subinterval and the pseudospectral approximation works properly.

5.1.4. Numerical differentiation in ESTER

At the moment, ESTER provides two classes for numerical differentiation:

• diff gl: Multi-domain Gauss-Lobatto numerical differentiation.

• diff leg: Gauss-Legendre numerical differentiation for axisymmetric functions on the
sphere with a defined type of symmetry (pole,equator).

The function prototypes are defined in numdiff.h.

5.2. Multi-domain Gauss-Lobatto numerical differentia-

tion

In the Gauss-Lobatto (or more properly Gauss-Lobatto-Chebyshev) collocation method, the basis
functions are Chebyshev polynomials of the first kind

Tl(x) = cos(l arccos(x))

defined in the interval (−1, 1). The collocation points are

xi = − cos(
iπ

n
)

The end points of the interval are also collocation points, which make this method well-suited
for boundary value problems.

In the ESTER library, multi-domain Gauss-Lobatto numerical differentiation is implemented
in the diff_gl class. To work with this class we should first create an object using

diff_gl gl(n);

The argument n is optional (default 1) and indicates the number of domains. To change the
number of domains we can do

68

gl.set_ndomains(n);

After setting the number of domains we must indicate the number of points per domain and the
position of the domains. Let’s see an example using three domains and the following set-up.

• First domain in the interval (0,5) with 30 points.

• Second domain in the interval (5,7.5) with 20 points.

• Third domain in the interval (7.5,10) with 20 points.

The diff_gl object can be initialized using the code

diff_gl gl;

gl.set_ndomains(3); // Use 3 domains

gl.set_xif(0.,5.,7.5,10.); // Set the limits between domains

gl.set_npts(30,20,20); // Set the number of points in each domain

gl.init(); // Initialize the object

The limits between the subdomains and the number of points are stored in C arrays that are
accessible from outside the class, so the code above is equivalent to

diff_gl gl;

gl.set_ndomains(3);

gl.xif[0]=0;gl.xif[1]=5;gl.xif[2]=7.5;gl.xif[3]=10;

gl.npts[0]=30;gl.npts[1]=20;gl.npts[2]=20;

gl.init();

During the initialization, the following objects are created:

Name Type Size Description
ndomains int Number of domains

N int Total number of points
x matrix (N,1) Collocation points xi
D matrix block diag (N,N) in blocks of (npts[i],npts[i]) Differentiation matrix
I matrix (1,N) Integration matrix
P matrix block diag (N,N) in blocks of (npts[i],npts[i]) Projection matrix Pij

P1 matrix block diag (N,N) in blocks of (npts[i],npts[i]) Inverse projection matrix P−1
ij

The following example illustrates the use of these objects:

[...] // Initialization (previous example)

matrix y,dy,ddy;

y=cos(gl.x); // Definition of function y

dy=(gl.D,y); // First derivative

69

ddy=(gl.D,gl.D,y); // Second derivative

double integral;

integral=(gl.I,y)(0); // integral=
∫ xif[3]=10

xif[0]=0
y(x)dx

// Note the (0) at the end to convert the result

// from matrix(1,1) to double

matrix yl;

yl=(gl.P,y); // Spectral coefficients

y=(gl.P1,yl); // Recover function values from spectral coefficients

A function can also be interpolated at any point within the whole domain using the method

eval(y,x)

where x can be of type double or matrix and the return value will be of always of type matrix.
It returns the value of y at the point(s) x. We can use also a third argument of type matrix

eval(y,x,T)

where T is modified during the call and can be used to interpolate other functions. For the
previous example

[...]

double y0,dy0;

matrix T;

y0=gl.eval(y,2.5,T)(0); // Get the value of y in x=2.5.

//The (0) at the end is needed because

// the result will be a matrix of size (1,1),

//and we want the first (and only)

// value of this matrix

dy0=(T,dy)(0); // We use the matrix T to calculate the value of dy in x=2.5

A diff gl object can be copied using the assignment operator. We can do

diff_gl gl1,gl2;

gl1.set_ndomains(2);

gl1.set_npts(10,10);

gl1.set_xif(0.,0.5,1.);

gl2=gl1;

Now gl2 is an independent copy of gl1 and, as gl1 has already been initialized, this is also the
case of gl2.

70

5.2.1. Example

Let’s see a full featured example that uses the class diff gl. We are going to solve the ordinary
differential equation

x2
d2y

dx2
+ x

dy

dx
− y = x2

within the interval [0, 1] with boundary conditions

y(0) = 0 y(1) = 0

whose exact solution is

y =
1

3
x(x− 1)

To simplify the task, we will use only 1 domain. Later, we will see the class solver that allows
to solve more complicated problems using several domains and several variables.

The code is the following

// The following example solves the differential equation

// x^2*y’’ + x*y’ - y = x^2

// with boundary conditions y(0)=0 and y(1)=0

// whose exact solution is

// y = x*(x-1)/3

#include<stdio.h>

#include"numdiff.h"

int main() {

//Initialize a diff_gl object with 1 domain

int n=20; // Number of points.

//In fact, this example can be solved using only 3 points.

diff_gl gl(1);

gl.set_npts(n);

gl.set_xif(0.,1.);

gl.init();

// We will work with only 1 domain, so we create a reference to the

// first (and only) block of gl.D

matrix &D=gl.D.block(0);

matrix &x=gl.x;

// Set up the operator matrix and the right hand side

matrix op,rhs;

op=x*x*(D,D)+x*D-eye(n);

rhs=x*x;

71

// Introduce boundary conditions

op.setrow(0,zeros(1,n));op(0,0)=1;

rhs(0)=0;

op.setrow(-1,zeros(1,n));op(-1,-1)=1;

rhs(-1)=0;

// Solve the system

matrix y;

y=op.solve(rhs);

// Interpolate the solution into a finer grid

matrix x_fine,y_fine;

x_fine=vector_t(0,1,100);

y_fine=gl.eval(y,x_fine);

// Compare with the exact solution

matrix y_exact;

y_exact=x_fine*(x_fine-1)/3;

printf("Solved using %d points\n",gl.N);

printf("Max. error=%e\n",max(abs(y_fine-y_exact)));

return 0;

}

To run the example, just copy the code above to a file, and compile with ester build. If
the file is called example.cpp we will do

$ ester_build example.cpp -o example

and then execute using

$./example

The output will be something like

Solved using 20 points

Max. error=5.329938e-16

72

5.3. Gauss-Legendre numerical differentiation

The Gauss-Legendre collocation method uses Legendre polynomials Pl(x) as basis functions. For
n points, the collocation points are defined as the roots of Pn(x).

Legendre collocation is particularly adapted to deal with axisymmetric functions on the sur-
face of a sphere, that depend only on the colatitude θ, just by doing x = cos θ.

The current implementation in ESTER considers only one domain, limited to one hemisphere
θ ∈ [0, π/2]. This is more efficient when dealing with functions that have a defined type of
symmetry with respect to the equator (θ = π/2), which is the case for all of the variables used
in the ESTER code. Legendre polynomials Pl(cos θ) are symmetric with respect to θ = 0 (the
pole). When dealing with antisymmetric functions with respect to the pole, the derivatives dPl

dθ
are used as basis functions instead.

The implementation considers four types of symmetry. Each type is indicated by its own
suffix.

Suffix Pole Equator Basis functions
00 Symmetric Symmetric Pl(cos θ) with l even
01 Symmetric Antisymmetric Pl(cos θ) with l odd

10 Antisymmetric Symmetric dPl

dθ with l odd

11 Antisymmetric Antisymmetric dPl

dθ with l even

Legendre numerical differentiation is implemented in the class diff leg. In order to use it,
we must start by creating an object

diff_leg leg;

Then we set the number of points by setting the variable npts, for example

leg.npts=20;

and initialize the object

leg.init();

The following objects are created:

Name Type Size Description
th matrix (1,npts) Collocation points xi

D 00, D 01, D 10, D 11 matrix (npts,npts) Differentiation matrices
D2 00, D2 01, D2 10, D2 11 matrix (npts,npts) Second differentiation matrices

lap 00, lap 01, lap 10, lap 11 matrix (npts,npts) Laplacian operator 1
sin θ

d
dθ

(
sin θ d

dθ

)
I 00 matrix (npts,1) Integration matrix

P 00, P 01, P 10, P 11 matrix (npts,npts) Projection matrices Pij

P1 00, P1 01, P1 10, P1 11 matrix (npts,npts) Inverse projection matrices P−1
ij

Contrary to the diff gl class, in which the functions was supposed to be column vectors, the
diff leg class expects functions to be defined as row vectors. This means that all the operators
are applied using right multiplication. For example, the derivative will be

dy=(y,D_00);

The reason for that is more clear when working with 2D functions. Consider the code

73

int nr=30;

int nth=20;

// Inititalize a diff_gl object with nr points

diff_gl gl(1);

gl.set_xif(0.,1.);gl.set_npts(nr);

gl.init();

// Initialize a diff_leg object with nth points

diff_leg leg;

leg.npts=nth;

leg.init();

// Define a 2D function

matrix y;

y=gl.x*sin(leg.th)*sin(leg.th);

// gl.x is (nr,1) and leg.th is (1,nth), then y is (nr,nth)

//Compute derivatives

matrix dy_x,dy_th,dy_x_th;

dy_x=(gl.D,y); // Derivative with respect to x

dy_th=(y,leg.D_00); // Derivative with respect to th

dy_x_th=(gl.D,y,leg.D_00); // Second derivative with respect to x and th

Note that the derivative of a function will have a different type of symmetry. For example,
for a symmetric-symmetric 00 function, the first derivative is

dy=(y,leg.D_00)

which is of type 11. Then to calculate the second derivative we should do

ddy=(y,leg.D_00,leg.D_11)

or, using the second derivative matrix

ddy=(y,leg.D2_00)

where ddy has type 00.
The integration matrix is defined only for type 00 functions and computes the integral between

0 and π with weight function sin θ

(y,leg.I_00)=

∫ π

0

y sin θdθ

We can interpolate functions at any point using eval xx, where xx is the type of symmetry,
for example

eval_00(y,th)

gives the value of y at the point(s) th. Here, th can be either double or int and the returned
value is always of type matrix. We may also use a third argument

eval_00(y,th,T)

74

where T can be used to interpolate additional functions at the same point(s) by doing

(y2,T)

A diff leg object can be copied using the assignment operator. We can do

diff_leg leg1,leg2;

leg1.npts=20;leg1.init();

leg2=leg1;

Now leg2 is an independent copy of leg1.

5.3.1. Example

Let’s see a more complete example. We will consider axisymmetric functions in spherical coor-
dinates, that is functions that depend only on r and θ. For the radial direction we use Gauss-
Lobatto differentiation in the interval (0, 1), and Legendre differentiation for the latitudinal
direction. We will write two functions, one for calculating the value of the laplacian at a certain
point and another one to evaluate the volume integral within the whole sphere. For simplicity,
we will consider only type 00 functions.

The code is as follows

/* The following example illustrates the use of the numerical differentiation

library in 2D in spherical coordinates */

#include<stdio.h>

#include"numdiff.h"

#include"constants.h" //For the defintion of PI

//Function prototypes

double laplacian(matrix y,double r0,double th0);

double integral(matrix y);

// Define diff_gl and diff_leg objects as global variables

diff_gl gl;

diff_leg leg;

// Create references for spherical coordinates

matrix &r=gl.x,&th=leg.th;

int main() {

//Initialize gl. In the example we will use 2 domains

gl.set_ndomains(2);

gl.set_xif(1e-3,0.2,1.); // Use 1e-3 as the interior limit (instead of 0)

// to avoid a division by zero in the

// calculation of the laplacian

gl.set_npts(100,100);

gl.init();

//Initialize leg

leg.npts=50;

75

leg.init();

matrix y;

//Define the function y

y=r*r*r*(1+sin(th)*sin(th));

double lap_y,int_y;

double r0=0.3,th0=PI/3;

lap_y=laplacian(y,r0,th0);

int_y=integral(y);

printf("The value of the laplacian at (%f,%f) is %e\n",r0,th0,lap_y);

printf("The volume integral is %e\n",int_y);

return 0;

}

// Function for calculating the laplacian of y at (r0,th0)

double laplacian(matrix y,double r0,double th0) {

matrix lap_y;

lap_y=(gl.D,r*r*gl.D,y)/r/r+(y,leg.lap_00)/r/r;

//Interpolate in the direction of r

lap_y=gl.eval(lap_y,r0); // Now lap_y is (1,nth)

//Interpolate in the direction of theta

lap_y=leg.eval_00(lap_y,th0); // Now lap_y is (1,1)

return lap_y(0);

// lap_y has only 1 element, but we must include (0)

// at the end to return a double

}

// Function for calculating the volume integral of y

double integral(matrix y) {

return 2*PI*(gl.I,r*r*y,leg.I_00)(0);

}

After running the code, the output should be

The value of the laplacian at (0.300000,1.047198) is 6.150000e+00

The volume integral is 3.490659e+00

76

5.4. Reference

Gauss-Lobatto differentiation

Data members

ndomains
N
x
D

P
P1
I
npts

xif

Functions

set ndomains(n)
set npts(n0,n1,. . .)

set xif(x0,x1,. . .)
init()

eval(y,x,T)

Legendre differentiation

Data members

npts
th
P 00,P 01,P 10,P 11

P1 00,P1 01,P1 10,P1 11
D 00,D 01,D 10,D 11
D2 00,D2 01,D2 10,D2 11

lap 00,lap 01,lap 10,lap 11
I 00

Functions

init()
eval 00(y,th,T)
eval 01(y,th,T)

eval 10(y,th,T)
eval 11(y,th,T)
eval(y,th,T,par pol,par eq)

5.4.1. Gauss-Lobatto differentiation

Data members

ndomains

Type: int

Description: Number of domains (read-only).

N

Type: int

Description: Total number of points, including all the domains (read-only).

x

Type: matrix

Description: Collocation points (N x 1).

77

D

Type: matrix block diag

Description: Differentiation matrix.

P

Type: matrix block diag

Description: Projection matrix.

P1

Type: matrix block diag

Description: Inverse projection matrix.

I

Type: matrix

Description: Integration matrix.

npts

Type: int *

Description: Array of size ndomains() with the number of points in each domain.

xif

Type: double *

Description: Array of size ndomains()+1 with the limits between domains.

Functions

set ndomains(n)

Type: Method

Inputs: n (int): Number of domains

Output : None

Description: Change the number of domains.

set npts(n0,n1,. . .)

Type: Method

Inputs: n0,n1,. . . (int): Number of points

Output : None

Description: Change the number of points in each domain.

78

set xif(x0,x1,. . .)

Type: Method

Inputs: n0,n1,. . . (double): Number of points

Output : None

Description: Change the position of the limits between domains.

init()

Type: Method

Inputs: None

Output : None

Description: Initializes the object.

eval(y,x,T)

Type: Method

Inputs: y (matrix): Function to evaluate
x (matrix or double): Evaluation point(s)
T (matrix): Interpolating matrix (optional, output)

Output : matrix

Description: Evaluate function y at point(s) x. If y is NxM and x is Kx1, the returned
matrix is KxM. The optional matrix T can be used to interpolate additional
functions by multiplying (T,y2).

5.4.2. Legendre differentiation

Data members

npts

Type: int

Description: Number of points.

th

Type: matrix

Description: θ values of the collocation points (1 x npts).

P 00,P 01,P 10,P 11

Type: matrix

Description: Projection matrices for each type of symmetry.

79

P1 00,P1 01,P1 10,P1 11

Type: matrix

Description: Inverse projection matrices for each type of symmetry.

D 00,D 01,D 10,D 11

Type: matrix

Description: Differentiation matrices for each type of symmetry.

D2 00,D2 01,D2 10,D2 11

Type: matrix

Description: Second differentiation matrices for each type of symmetry.

lap 00,lap 01,lap 10,lap 11

Type: matrix

Description: Laplacian operator matrices for each type of symmetry.

(lap xx, f) ≡ 1

sin θ

d

dθ

(
sin θ

df

dθ

)

I 00

Type: matrix

Description: Integration matrix (npts x 1) for symmetric functions.

(I 00, f) ≡
∫ π

0

f sin(θ)dθ

Functions

init()

Type: Method

Inputs: None

Output : None

Description: Initializes the object.

80

eval 00(y,th,T)

Type: Method

Inputs: y (matrix): Function to evaluate
th (matrix or double): Evaluation point(s)
T (matrix): Interpolating matrix (optional, output)

Output : matrix

Description: Evaluate function y(θ) at point(s) th. The function y should be symmetric
at the pole and the equator. If y is MxN and x is 1xK, the returned matrix is
MxK. The optional matrix T can be used to interpolate additional functions
by multiplying (T,y2).

eval 01(y,th,T)

Type: Method

Inputs: y (matrix): Function to evaluate
th (matrix or double): Evaluation point(s)
T (matrix): Interpolating matrix (optional, output)

Output : matrix

Description: Evaluate function y(θ) at point(s) th. The function y should be symmetric
at the pole and antisymmetric the equator. If y is MxN and x is 1xK, the
returned matrix is MxK. The optional matrix T can be used to interpolate
additional functions by multiplying (T,y2).

eval 10(y,th,T)

Type: Method

Inputs: y (matrix): Function to evaluate
th (matrix or double): Evaluation point(s)
T (matrix): Interpolating matrix (optional, output)

Output : matrix

Description: Evaluate function y(θ) at point(s) th. The function y should be antisymmetric
at the pole and symmetric at the equator. If y is MxN and x is 1xK, the
returned matrix is MxK. The optional matrix T can be used to interpolate
additional functions by multiplying (T,y2).

81

eval 11(y,th,T)

Type: Method

Inputs: y (matrix): Function to evaluate
th (matrix or double): Evaluation point(s)
T (matrix): Interpolating matrix (optional, output)

Output : matrix

Description: Evaluate function y(θ) at point(s) th. The function y should be antisymmetric
at the pole and the equator. If y is MxN and x is 1xK, the returned matrix is
MxK. The optional matrix T can be used to interpolate additional functions
by multiplying (T,y2).

eval(y,th,T,par pol,par eq)

Type: Method

Inputs: y (matrix): Function to evaluate
th (matrix or double): Evaluation point(s)
T (matrix): Interpolating matrix (output)
par pol (int): Type of symmetry at the pole
par eq (int): Type of symmetry at the equator

Output : matrix

Description: Evaluate function y(θ) at point(s) th. par pol and par eq can be 0 (symmet-
ric) or 1 (antisymmetric). If y is MxN and x is 1xK, the returned matrix
is MxK. The matrix T can be used to interpolate additional functions by
multiplying (T,y2).

82

6
Mapping. Axisymmetric spheroidal coordinates

We have seen at the end of the previous chapter that we can work with 2D problems combining
diff gl and diff leg objects. This is exactly the purpose of the mapping class, that contains
all the elements to work with spherical, and more important, with deformed spheroidal domains.

6.1. Introduction

Rotating stars are not spherical. The centrifugal force flattens the star, and this flattening
increases with the angular velocity. For this reason, we use a discretization of the stellar variables
in a deformed spheroidal domain.

Note that the problems in which we are interested involves only axisymmetric quantities,
thus essentially 2D. For that reason, we restrict the discussion to axisymmetric 2D problems in
a spherical-like domain, but it can be generalized to a non-axisymmetric spheroidal geometry as
shown in Bonazzola et al. (1998). This case is dealt with in the next chapter.

6.1.1. Coordinate mapping

Let (r, θ, φ) be the spherical coordinates and D be an axisymmetric domain centered at the origin
of coordinates (r = 0) and whose outer boundary ∂D can be represented by a function R(θ) that
depends only on colatitude. We define a new set of coordinates (ζ, θ′, φ′) such that the new
radial-like coordinate ζ is constant over ∂D. These new spheroidal coordinates are defined by
the transformation:  r = r(ζ, θ′)

θ = θ′

φ = φ′
(6.1)

The problem reduces to find a suitable form for the function r(ζ, θ).
In our case we are going a little bit further. We split the domain D in n subdomains Di with

i = 0, . . . , n− 1. The frontiers between this subdomains are represented by a series of functions
Ri(θ), i = 0, . . . , n, such that the Di ∈ [Ri(θ), Ri+1(θ)]. Note that Rn(θ) = R(θ) is the outer
boundary of the whole domain and, if the domain contains the origin of coordinates R0(θ) = 0.

We also use an external domain Dex that extends from the outer boundary Rn(θ) to infinity.
It will be useful for writing boundary conditions for the gravitational potential.

83

Figure 6.1: Coordinate mapping.

We use a technique adopted from Bonazzola et al. (1998), in each subdomain Di we use a
mapping in the form

r(ζ, θ) = aiξ∆ηi +Ri(θ) +Ai(ξ)(∆Ri(θ)− ai∆ηi) for ζ ∈ [ηi, ηi+1] (6.2)

where we have defined:

ηi = Ri(θ = 0)

∆ηi = ηi+1 − ηi

∆Ri(θ) = Ri+1(θ)−Ri(θ)

ξ =
ζ − ηi
∆ηi

so that 0 ≤ ξ ≤ 1

so the ηi are the polar radii of the interfaces bewteen the domains. Since we choose the polar
radius as the unit length Rn(θ = 0) = 1. Hence, inside the star

0 ≤ ζ ≤ 1

From the definition we also have η0 = 0 and ηn = 1.
The function(s) Ai(ξ) and the constant(s) ai determine the final form of the mapping. In

particular, the function Ai(ξ) should verify the following conditions:

r(ηi, θ) = R(θ) −→ Ai(ξ = 0) = 0

r(ηi+1, θ) = Ri+1(θ) −→ Ai(ξ = 1) = 1

The simplest possibility is a linear mapping where Ai(ξ) = ξ and ai = 0 giving r(ζ, θ) = Ri(θ)+
ξ∆Ri(θ). This mapping however is not equivalent to the spherical geometry near the center

84

and therefore not adapted to the use of spherical harmonics basis for the angular dependence of
the solution. This is why Bonazzola et al. (1998) proposed a mapping that satisfies some extra
conditions to make it suitable for spectral methods. For that reason they set A′

i(ξ = 0) = 0 and
A′

i(ξ = 1) = 0. Doing this, the first derivative of the mapping

rζ =
∂r

∂ζ
= ai +A′

i(ξ)

(
∆Ri(θ)

∆ηi
− ai

)
(6.3)

is constant over the boundaries of the domains. This facilitates the writing of interface conditions
for the derivatives of the variables in the problem when they are expressed in terms of their
spectral coefficients. In this case, we set

Ai(ξ) = −2ξ3 + 3ξ2 for i = 1, . . . , n− 1 (6.4)

A0(ξ) = −1.5ξ5 + 2.5ξ3 (6.5)

thus

A′
i(ξ) = 6ξ(1− ξ) and A′

0 = 7.5ξ2(1− ξ2) (6.6)

The constants ai deserve some special attention. We first note that the Jacobian of the
transformation (6.1) is non-singular, namely

J =

∣∣∣∣∣ ∂r
∂ζ

∂r
∂θ′

∂θ
∂ζ

∂θ
∂θ′

∣∣∣∣∣ = rζ ̸= 0

Actually, we want rζ > 0, so that r is monotonically increasing with ζ. Then ai should satisfy
the condition

ai(A
′
i(ξ)− 1) < A′

i(ξ)
∆Ri(θ)

∆ηi
(6.7)

For A′
i(ξ) = 0 (the boundaries), the condition states ai > 0. When A′(ξ) < 1, the condition is

automatically satisfied (note that A′
i(ξ) is always positive). But, since A(ξ) should go from 0 at

ξ = 0 to 1 at ξ = 1, we know that max(A′
i(ξ)) ≥ 1, where the equality corresponds to the linear

mapping that we have seen before. So, in the worst case, the condition becomes

ai <
1

1− 1/max(A′
i(ξ))

min(∆Ri(θ))

∆ηi
(6.8)

or, using (6.4)

ai < 3
min(∆Ri(θ))

∆ηi
for i = 1, . . . , n− 1

a0 <
15

7

min(∆R0(θ))

∆η0

(6.9)

In practice, we take

ai = 1 . (6.10)

This is motivated by the fact that we work with oblate domains. Indeed, the flattening increases
for the successive subdomains so that min(∆Ri(θ)) = ∆Ri(0) = ∆ηi. Hence, conditions (6.9)
are fully satisfied.

85

In addition, working with a fixed value of ai makes easier to work with problems where the
frontiers between the subdomains are not known a priori, and the contribution of the mapping to
the Jacobian of the Newton algorithm becomes a smooth function suitable for iterative methods.

The general form of the Jacobian of the mapping to be used in the global Newton algorithm
searching for the stellar model is defined by the expression

δri = J
(i)
0 (ζ, θ)δηi + J

(i)
1 (ζ, θ)δ∆ηi + J

(i)
2 (ζ, θ)δRi(θ) + J

(i)
3 (ζ, θ)δ∆Ri(θ) (6.11)

and using (6.2), for fixed ai

J
(i)
0 = 0

J
(i)
1 = ai(ξ −Ai(ξ))

J
(i)
2 = 1

J
(i)
3 = Ai(ξ)

(6.12)

For the external domain, we take

ξex =
ξ

1− ξ
with ξ ∈ [0, 1[and ξex ∈ [0,∞[(6.13)

so that

rex(ζ, θ) = ξex +R(θ) (6.14)

with Jacobian

J
(ex)
0 = 0

J
(ex)
1 = 0

J
(ex)
2 = 1

J
(ex)
3 = 0

(6.15)

6.1.2. Spheroidal coordinates

In the previous section, we have defined a system of spheroidal coordinates (ζ,θ′,φ′), where
θ′ = θ and φ′ = φ correspond to the usual spherical coordinates and ζ is defined by a relation
r = r(ζ, θ). These spheroidal coordinates are non-orthogonal, which means that the surfaces of
constant ζ are not perpendicular to those of constant θ.

Before we continue, we should clarify a point. We have set θ′ = θ, so hereafter we will remove
the prime (′) to simplify the notation. But when working with spheroidal coordinates, the partial
derivative ∂

∂θ refers to the derivative with respect to θ with ζ constant, that is not the usual
derivative in spherical coordinates that is done holding r constant.

∂

∂θ

∣∣∣∣
ζ,φ const.

̸= ∂

∂θ

∣∣∣∣
r,φ const.

The same can be said for the azimuthal coordinate φ but, in this case ∂
∂φ

∣∣∣
ζ,θ const.

=

∂
∂φ

∣∣∣
r,θ const.

since r does not depend on φ.

86

Natural basis

We will start by defining the natural basis for the spheroidal coordinates, we have two sets of
basis vectors:

• Covariant basis vectors: Ei =
∂r

∂xi

Eζ = rζ r̂, Eθ = rθr̂ + rθ̂, Eφ = r sin θφ̂, (6.16)

• Contravariant basis1 vectors: Ei = ∇xi

Eζ =
r̂

rζ
− rθ
rrζ

θ̂, Eθ =
θ̂

r
, Eφ =

φ̂

r sin θ
, (6.17)

where r̂, θ̂, φ̂ are the usual unit vectors in spherical coordinates, and

rζ =
∂r

∂ζ
rθ =

∂r

∂θ

The vectors of the natural basis are not unit vectors. The covariant vector Ei is parallel to
the line xj = const. with j ̸= i, while the contravariant vector Ei is perpendicular to the surface
xi = const. For orthogonal coordinates Ei ∥ Ei, but this is not the case for non-orthogonal
coordinates.

The basis vectors satisfy
Ei ·Ej = Ei ·Ej = δij (6.18)

where δij is the Kronecker’s delta.
Using the basis vectors, we can calculate the metric tensor

gij = Ei ·Ej =

 r2ζ rζrθ 0

rζrθ r2 + r2θ 0
0 0 r2 sin2 θ

 (6.19)

or, in contravariant form

gij = Ei ·Ej =


r2 + r2θ
r2r2ζ

−rθ
r2rζ

0

−rθ
r2rζ

1

r2
0

0 0
1

r2 sin2 θ

 (6.20)

1The components of the contravariant basis vectors are obtained from the covariant ones by solving the 3×3 = 9
equations Ei ·Ej = δij implied by the fact that {Ei}i=1−3 is the dual basis of {Ei}i=1−3.

87

Note that gij is the matrix inverse of gij

gijg
jk = δij

where we have used the Einstein’s summation convention, that implies summation over repeated
indices.

Given two points xi and xi + dxi, the distance (ds) between them is given by the metric
tensor:

ds2 = gijdx
idxj = r2ζdζ

2 + 2rζrθdζdθ + (r2 + r2θ)dθ
2 + r2 sin2 θdφ2 (6.21)

The basis vectors verify
Ei · (Ej ×Ek) = ϵijk (6.22)

and
Ei · (Ej ×Ek) = ϵijk (6.23)

where ϵijk is the Levi-Civita tensor

ϵijk =
√

|g|[i, j, k] (6.24)

ϵijk =
1√
|g|

[i, j, k] (6.25)

where |g| = det(gij) = r4r2ζ sin
2 θ and

[i, j, k] =

 1 the arguments are an even permutation of 1,2,3
−1 the arguments are an odd permutation of 1,2,3
0 two or more arguments are equal

(6.26)

Representation of vectors

A vector v can be represented either in covariant or contravariant form:

• Covariant form: v = VζE
ζ + VθE

θ + VφE
φ

• Contravariant form: v = V ζEζ + V θEθ + V φEφ

Here, Vi are the covariant components of the vector v and V i the contravariant components.
Note that

Ei · v = Vi and Ei · v = V i

We can use the metric tensor to pass from one representation to the other, indeed

Vi = Ei · v = Ei · (EjV
j) = gijV

j (6.27)

and similarly
V i = gijVj (6.28)

Let (vr, vθ, vφ) be the spherical components of a vector v such that v = vrr̂+ vθθ̂+ vφφ̂. Its
spheroidal components will be

Vζ = rζvr, Vθ = rθvr + rvθ, Vφ = r sin θvφ (6.29)

88

and
V ζ =

vr
rζ

− rθ
rrζ

vθ, V θ =
vθ
r
, V φ =

vφ
r sin θ

(6.30)

We can see from this expressions that V θ an V φ are in fact angular velocities.
Using the properties of the basis vectors it can be shown that the scalar product of two

vectors is given by
a · b = AiB

i = AiBi (6.31)

and the cross product is
(a× b)i = ϵijkAjBk

(a× b)i = ϵijkA
jBk (6.32)

We have presented the basics of the representation of vectors in spheroidal coordinates, let’see
now a little example. Consider a surface S defined by ζ = const. as for example the surface of
a star or the frontier between two subdomains. We want to calculate the normal and tangential
projections of a vector v with respect to S. First, we define a unit vector n̂, perpendicular to S.
For that, we just recall that Eζ is perpendicular to the surfaces ζ = const., but it is not a unit
vector, so

n̂ =
Eζ

|Eζ |
=

Eζ

√
Eζ ·Eζ

=
Eζ√
gζζ

(6.33)

then, the normal projection is

n̂ · v =
V ζ√
gζζ

=
rζV

ζ√
1 +

r2θ
r2

(6.34)

For the parallel projection we have two vectors, the first one, in the direction of φ is just the
spherical unit vector φ̂, in the latitudinal direction, however, it will be

t̂ =
Eθ

|Eθ|
=

Eθ√
Eθ ·Eθ

=
Eθ√
gθθ

(6.35)

so, the parallel projections over S are

t̂ · v =
Vθ√
gθθ

=
1√

1 +
r2θ
r2

Vθ
r

(6.36)

and

φ̂ · v =
Vφ

r sin θ
(6.37)

Tensors

A second order tensor T is represented using 2 indices

T = T ijEiEj = TijE
iEj = T ijEiE

j = Ti
jEiEj (6.38)

Again, we can use the metric tensor to lower and raise indices

T ij = gikTk
j = gjlT i

l = gikgjlTkl
Tij = gikT

k
j = gjlTi

l = gikgjlT
kl (6.39)

89

The tensor product of 2 vectors is a tensor

(a b)ij = aibj (6.40)

The dot product between a tensor and a vector is

(T · v)i = T ijVj (6.41)

and between a vector and a tensor

(v · T)j = T ijVi (6.42)

Finally, the double dot product is a scalar

T : T = T ijTij (6.43)

All of this can be generalized to higher order tensors. Note that vectors are in fact tensors
of order 1.

Differential operators

Our goal is to be able to write differential equations using spheroidal coordinates. We will start
finding the relation between the partial derivatives with respect to the spherical coordinates and
those calculated with respect to the spheroidal coordinates. We will add the primes (′) in the
notation for the spheroidal θ′ and φ′ coordinates to clarify the notation, so the derivative with
respect to a spheroidal coordinate is done holding the other spheroidal coordinates constant.
Following the chain rule

∂

∂r
=
∂ζ

∂r

∂

∂ζ
+
∂θ′

∂r

∂

∂θ′
+
∂φ′

∂r

∂

∂φ′ (6.44)

Obviously,
∂θ′

∂r
=
∂φ′

∂r
= 0, and

dr = rζdζ + rθdθ

dζ =
1

rζ
dr − rθ

rζ
dθ

where we see
∂ζ

∂r
=

1

rζ
and

∂ζ

∂θ
= −rθ

rζ
. Then

∂

∂r
=

1

rζ

∂

∂ζ
(6.45)

The other partial derivatives are calculated in the same way

∂

∂θ
=

∂

∂θ′
− rθ
rζ

∂

∂ζ
(6.46)

∂

∂φ
=

∂

∂φ′ (6.47)

Of course, we could take this expressions and substitute them into the expressions for the dif-
ferential operators corresponding to the spherical coordinates, but there is a much more efficient
way to do it.

90

First, let’s define the general form of the gradient of a scalar quantity. The gradient will be
a vector, whose covariant components are

(∇ϕ)i =
∂ϕ

∂xi
= ϕ,i (6.48)

where we have introduced the comma notation for the partial derivative. The contravariant
components of the gradient will be

(∇ϕ)i = gijϕ,j (6.49)

We can also derive a component of a vector V i in the same way. However, this derivative

∂V i

∂xj
= V i

,j (6.50)

is not a tensor, as it does not transform correctly under a change of coordinates. That’s why we
will introduce the covariant derivative

∇jV
i = V i

;j = V i
,j + Γi

kjV
k (6.51)

Where Γi
kj = Ei · ∂Ek

∂xj
is a Christoffel symbol of the second kind. The covariant derivative of a

vector V i
;j is a tensor that represents the gradient of the vector.

(∇v)ij = gjk(∇v)ik = gjkV i
;k (6.52)

We can also calculate the covariant derivative using the covariant components of the vector

∇jVi = Vi;j = Vi,j − Γk
ijVk (6.53)

The Christoffel symbols can be calculated using the following relation

Γi
jk =

1

2
gil(glj,k + glk,j − gjk,l) (6.54)

where we can see that they are symmetric with respect to the second and third indices Γi
jk = Γi

kj .
They also verify

Γi
ji =

∂ ln
√
|g|

∂xj
(6.55)

The covariant derivative of second order tensors is done in a similar way

∇kT
ij = T ij

;k = T ij
,k + Γi

lkT
lj + Γj

lkT
il (6.56)

If one of the indices is covariant, then we do

∇kT
i
j = T i

j ;k = T i
j ,k + Γi

lkT
l
j − Γl

jkT
i
l (6.57)

where we can see the general rule valid also for higher order tensors, the covariant derivative is
equal to the regular derivative plus:

• For each contravariant index, we add Γi
lkT

...l...

• For each covariant index, we subtract Γl
ikT...l...

91

Using the covariant derivative, we can calculate all the differential operators in spheroidal
coordinates. We have already see the gradient of a scalar and a vector, similarly, the divergence
of a vector will be

∇ · v = ∇iV
i = V i

;i (6.58)

and for a tensor
(∇ · T)i = ∇jT

ij = T ij
;j (6.59)

Note that some authors prefer the definition (∇ · T)j = ∇iT
ij = T ij

;i. Using the expresion for
the cross product, we can calculate the curl of a vector

(∇× v)i = ϵijk∇jVk = ϵijkVk;j (6.60)

The laplacian of a scalar field will be

∆ϕ = ∇ · (∇ϕ) = ∇i(g
ij∇jϕ) = (gijϕ,j);i (6.61)

and for a vector field
(∆v)i = ∇j(g

jk∇kV
i) = (gjkV i

;k);j (6.62)

The material derivative is
[(v · ∇)v]

i
= V j∇jV

i = V jV i
;j (6.63)

Useful relations

• Line, area and volume elements

– Line element

ds2 = gijdx
idxj = r2ζdζ

2 + 2rζrθdζdθ + (r2 + r2θ)dθ
2 + r2 sin2 θdφ2 (6.64)

dr = Eidx
i = Eζdζ +Eθdθ +Eφdφ (6.65)

– Area element in a surface ζ =const.

dS = (Eθ ×Eφ)dθdφ = r2rζ sin θE
ζdθdφ (6.66)

dS = |dS| =
√
gζζr2rζ sin θdθdφ = r2

√
1 +

r2θ
r2

sin θdθdφ (6.67)

– Area element in a surface of constant p = p(ζ, θ).

dS = r2rζ sin θ

(
Eζ +

p,θ
p,ζ

Eθ

)
dθdφ (6.68)

dS = |dS| = r2rζ sin θ

√
gζζ + 2

p,θ
p,ζ

gζθ +

(
p,θ
p,ζ

)2

gθθdθdφ (6.69)

– Volume element

dV = Eζ · (Eθ ×Eφ)dζdθdφ = r2rζ sin θdζdθdφ (6.70)

92

• Differential operators

– Gradient

∇ϕ = ϕ,iE
i =

∂ϕ

∂ζ
Eζ +

∂ϕ

∂θ
Eθ +

∂ϕ

∂φ
Eφ (6.71)

– Divergence

∇ · v = V i
;i =

∂V i

∂xi
+
∂ ln

√
|g|

∂xk
V k =

1√
|g|
∂k(
√
|g|V k)

=
∂V ζ

∂ζ
+

(
2rζ
r

+
rζζ
rζ

)
V ζ +

∂V θ

∂θ
+

(
2rθ
r

+
cos θ

sin θ
+
rζθ
rζ

)
V θ +

∂V φ

∂φ
(6.72)

– Laplacian

∆ϕ = div(∇ϕ) = (gijϕ,j);i =
1√
|g|

∂

∂xi

(√
|g|gij ∂ϕ

∂xj

)
=

= gζζ
∂2ϕ

∂ζ2
+ 2gζθ

∂2ϕ

∂ζ∂θ
+

1

r2
∂2ϕ

∂θ2
+

1

r2 sin2 θ

∂2ϕ

∂φ2
+

+

[
2

rrζ
− rθθ
r2rζ

− gζζ
rζζ
rζ

− gζθ
(
2rζθ
rζ

− cos θ

sin θ

)]
∂ϕ

∂ζ
+

cos θ

r2 sin θ

∂ϕ

∂θ

(6.73)

– Curl

∇× v = ϵijkVk;jEi =

=
1

r2rζ sin θ

[(
∂Vφ
∂θ

− ∂Vθ
∂φ

)
Eζ +

(
∂Vζ
∂φ

− ∂Vφ
∂ζ

)
Eθ +

(
∂Vθ
∂ζ

− ∂Vζ
∂θ

)
Eφ

]
(6.74)

– Material derivative

(a · ∇)b = AjBi
;jEi =

=

[
Aζ ∂B

ζ

∂ζ
+Aθ ∂B

ζ

∂θ
+Aφ ∂B

ζ

∂φ
+
rζζ
rζ
AζBζ +

(
rζθ
rζ

− rθ
r

)(
AζBθ +AθBζ

)
+

+
1

rζ

(
rθθ −

2r2θ
r

− r

)
AθBθ +

sin θ

rζ
(rθ cos θ − r sin θ)AφBφ

]
Eζ+

+

[
Aζ ∂B

θ

∂ζ
+Aθ ∂B

θ

∂θ
+Aφ ∂B

θ

∂φ
+
rζ
r

(
AζBθ +AθBζ

)
+

2rθ
r
AθBθ − sin θ cos θAφBφ

]
Eθ+

+

[
Aζ ∂B

φ

∂ζ
+Aθ ∂B

φ

∂θ
+Aφ ∂B

φ

∂φ
+
rζ
r

(
AζBφ +AφBζ

)
+

(
rθ
r

+
cos θ

sin θ

)(
AθBφ +AφBθ

)]
Eφ

(6.75)

93

Continuous between subdomains
Bonazzola Linear mapping

r Yes Yes
rζ Yes No
rζζ No Yes
rθ Yes Yes
rθθ Yes Yes
rζθ Yes No

Table 6.1: Note that if the ai’s change from one domain to the next, rζ is not continuous even
in the Bonazzola et al. mapping.

• Christoffel symbols (different from 0)

Γζ
ζζ =

rζζ
rζ

Γζ
ζθ =

rζθ
rζ

− rθ
r

Γζ
θθ =

1

rζ

(
rθθ −

2r2θ
r

− r

)
Γζ
φφ =

sin θ

rζ
(rθ cos θ − r sin θ) Γθ

ζθ =
rζ
r

Γθ
θθ =

2rθ
r

Γθ
φφ = − sin θ cos θ Γφ

ζφ =
rζ
r

Γφ
θφ =

rθ
r

+
cos θ

sin θ

(6.76)

where Γi
jk = Γi

kj should be used for the remaining ones.

6.1.3. Multidomain and continuity conditions

When using multidomain one faces the problem of writing continuity conditions for the different
variables on the boundaries between contiguous subdomains. The main issue is that the mapping
presented in 6.1.1 has discontinuities in some of its derivatives, so we should be careful of using
the correct expression for the continuity conditions.

In the case of a scalar field ϕ(r, θ), if ϕ is continuous between subdomains, the condition is
simply

ϕ(+) = ϕ(−) (6.77)

where (+) and (−) represent each side of the boundary. If we want ϕ to be derivable across the
boundary, we have to write a condition on the normal derivative n̂ ·∇ϕ (and not on ∂ϕ

∂ζ), namely,

n̂ · ∇(+)ϕ(+) = n̂ · ∇(−)ϕ(−) (6.78)

where

n̂ · ∇ϕ =
Eζ√
gζζ

·
(
∂ϕ

∂ζ
Eζ +

∂ϕ

∂θ
Eθ +

∂ϕ

∂φ
Eφ

)

=
√
gζζ

∂ϕ

∂ζ
+

gζθ√
gζζ

∂ϕ

∂θ

=

√
1 +

r2θ
r2

(
1

rζ

∂ϕ

∂ζ
− rθ
r2 + r2θ

∂ϕ

∂θ

)
(6.79)

94

We know that r and rθ are continuous across the boundary and if ϕ is continuous then so is ∂ϕ
∂θ ,

thus condition (6.78) becomes

1

r
(+)
ζ

(
∂ϕ

∂ζ

)(+)

=
1

r
(−)
ζ

(
∂ϕ

∂ζ

)(−)

(6.80)

that is equivalent to saying

(
∂ϕ

∂r

)(+)

=

(
∂ϕ

∂r

)(−)

. In general r
(+)
ζ ̸= r

(−)
ζ .

In the case of a vector field, the conditions are

r
(+)
ζ V ζ (+)

= r
(−)
ζ V ζ (−)

V θ(+)
= V θ(−)

V φ(+) = V φ(−)

(6.81)

for continuity and(
∂V ζ

∂ζ

)(+)

+
1

r
(+)
ζ

(
r
(+)
ζζ V ζ (+)

+ r
(+)
ζθ V θ(+)

)
=

(
∂V ζ

∂ζ

)(−)

+
1

r
(−)
ζ

(
r
(−)
ζζ V ζ (−)

+ r
(−)
ζθ V θ(−)

)
1

r
(+)
ζ

(
∂V θ

∂ζ

)(+)

=
1

r
(−)
ζ

(
∂V θ

∂ζ

)(−)

1

r
(+)
ζ

(
∂V φ

∂ζ

)(+)

=
1

r
(−)
ζ

(
∂V φ

∂ζ

)(−)

(6.82)
for derivability. These conditions are based on the fact that the spherical components of the
vector field are continuous and derivable scalar functions. For a physical boundary, it could
happen that some components of the vector field are continuous (or derivable) and others are
not, then none of the above conditions is correct.

6.1.4. The meridional stream function

We consider the meridional velocity field only. Since the star is assumed axisymmetric and that
we consider a steady state, the meridional velocity field verifies

∇·W = 0 with W = ρv (6.83)

This means that

∂
√
gW ζ

∂ζ
+
∂
√
gW θ

∂θ
= 0 with

√
g = r2rζ sin θ (6.84)

so we choose for the meridional stream function ψ of the mass flux W

∂ψ

∂ζ
=

√
gW θ and

∂ψ

∂θ
= −√

gW ζ (6.85)

Let us check that ψ is indeed the stream function of momentum meridional circulation W . For
that, we should check that lines ψ = Cst are tangent to the vector W or that∣∣∣∣ wr dr

wθ rdθ

∣∣∣∣ = 0 ⇐⇒ W parallel to dl (6.86)

95

where wr and wθ are spherical coordinates components of W . We note that these components
are related to the contravariant ones by

W ζ =
wr

rζ
− rθ
rrζ

wθ and W θ =
wθ

r

hence we obtain

wr = − 1

r2 sin θ

(
∂ψ

∂θ
− rθ
rζ

∂ψ

∂ζ

)
and wθ =

1

rrζ sin θ

∂ψ

∂ζ
(6.87)

We therefore should prove that

dψ = 0 =⇒ wθdr − wrrdθ = 0

or that

1

rrζ sin θ

∂ψ

∂ζ
dr +

1

r2 sin θ

(
∂ψ

∂θ
− rθ
rζ

∂ψ

∂ζ

)
rdθ = 0 (6.88)

We recall that the change of coordinates

(r, θ, φ) −→ (ζ, θ′, φ′)

with θ′ = θ and φ′ = φ implies that

∂ψ

∂r
=

1

rζ

∂ψ

∂ζ
and

∂ψ

∂θ
=
∂ψ

∂θ′
− rθ
rζ

∂ψ

∂ζ

so that (6.88) now reads

1

r sin θ

∂ψ

∂r
dr +

1

r2 sin θ

∂ψ

∂θ
rdθ = 0

or
∂ψ

∂r
dr +

∂ψ

∂θ
dθ = 0 = dψ

so ψ = Cst indeed describes the streamlines in a meridional plane.

Situation in the ESTER code (steady version)

In the code G is called the stream function which is not. Actually, if we set

ψ = −r sin θG (6.89)

then we find

wr =
1

r sin θ

∂

∂θ
(sin θG)− rθ

rrζ

∂G

∂ζ
and wθ = − 1

rrζ

∂rG

∂ζ

which is what is coded in ESTER. G is not a stream function since

dψ = 0 =⇒ r sin θdG+ sin θGdr + cos θGdθ = 0

so dG ̸= 0 on the streamlines.
Now in the 2013 paper we wrote that

96

W = ρv = ∇× (ψeφ)

in that case ψ is not a stream function since

wθdr − wrrdθ ̸= dψ

The correct expression is

W = ρv = ∇× (ΨEφ) = ∇× Ψ

r sin θ
eφ

In this case Ψ is a true stream function. Indeed,

W i =
[i, j, φ]
√
g

∂jΨ

which yields

W ζ =
1
√
g

∂Ψ

∂θ
and W θ = − 1

√
g

∂Ψ

∂ζ

which is the same as (6.85) up to the sign.
So the ESTER code is consistent with the paper since they agree on

ψ = G =
Ψ

r sin θ

but r sin θG = Cst should be used to draw the meridional streamlines.

Computation of the stream function

If we solve for the velocity components we may wish to get the stream function which isocontours
show the stream lines.

We need to solve for ψ and for that we use the decomposition on spherical harmonics. Inspired
by the spherical geometry we set

√
gW ζ = sin θ

∑
ℓ

uℓ(ζ)Yℓ (6.90)

√
gW θ = sin θ

∑
ℓ

vℓ(ζ)∂θYℓ (6.91)

where Yℓ is the m = 0 spherical harmonics of degree ℓ. We now set

ψ(ζ, θ) = sin θ
∑
ℓ

ψℓ(ζ)∂θYℓ (6.92)

so that it turns out, finally, that

ψℓ(ζ) =
uℓ(ζ)

ℓ(ℓ+ 1)
(6.93)

So we just need to compute the uℓ(ζ) on the radial grid. We recall that

W ζ =
ρ

rζ

(
vr −

rθ
r
vθ

)
(6.94)

97

so that

uℓYℓ = ρr2
(
vr −

rθ
r
vθ

)
(6.95)

hence requiring a Legendre transform to get the uℓ function.

98

6.2. Coordinate mapping in ESTER

The class mapping combines a diff_gl object with a diff_leg object to perform calculations
in 2D. The prototype of this class is defined in mapping.h.

Let’s see an example of initialization of a mapping object

mapping map;

map.set_ndomains(3);

map.set_npts(20);

map.set_nt(25);

map.set_nex(20);

map.init();

map.R.setrow(1,0.5*ones(1,map.nt));

map.R.setrow(2,1+0.1*sin(map.th)*sin(map.th));

map.R.setrow(3,2+0.3*sin(map.th)*sin(map.th));

map.remap();

First, we have declared the object

mapping map;

Then we set the number of domains

map.set_ndomains(3);

Our mapping will have 3 domains plus one external domain. We choose the number of points in
the internal domains

map.set_npts(20);

That is, the 3 domains will have each one 20 points. We can also set a different number of points
for each domain, for that we should do

int npts[3];

npts[0]=10;npts[1]=20;npts[2]=30;

map.set_npts(npts);

After that, we set the number of points in latitude (25) and in the external domain (20)

map.set_nt(25);

map.set_nex(20);

If we are not using the external domain, there is no need to change its number of points (It is 10
by default). There is one optional parameter that we can set before initialize the mapping

map.mode=MAP_BONAZZOLA;

to use the mapping with constant rζ at the boundaries presented in the previous section (this is
the default), or

map.mode=MAP_LINEAR;

99

to use a linear mapping. Now we can proceed with the initialization

map.init();

If we change the resolution after this point, we should call init() again. Now we have a working
object, with 3 spherical domains distributed uniformly from r = 0 to r = 1. If this setup is fine
for us, then we are done with the initialization, but usually we will want to change to boundaries
between domains. This is done using the matrix R with size (ndomains + 1) × nθ. Each row of
R defines a different boundary, starting with the row 0 that corresponds to the inner boundary.
In the previous example, we have not changed the inner boundary, so our mapping contains the
center of coordinates, but if we want the mapping to start, for example, at r = 0.3, we could
just add

map.R.setrow(0,0.3*ones(1,map.nt));

In the definition of the boundaries we have used map.th that contains the values of the θ coor-
dinate. Once we have set the boundaries we just call remap()

map.remap();

We can call remap() as many times as we want if we need to change the boundaries again.
After the initialization, a mapping object contains the following variables

Name Type Size Description

ndomains int Number of domains

nr int Number of radial points

nt int Number of latitudinal points

nex int Number of radial points in the
external domain

npts int[ndomains] Number of points in each domain

R matrix (ndomains+1,nt) Domain boundaries

eta matrix (ndomains+1,nt) R(θ = 0)

z matrix (nr,1) Spheroidal radial coordinate ζ

th matrix (1,nt) Colatitude θ

r matrix (nr,nt) Spherical radial coordinate r

ex.r matrix (nex,nt) Spherical radial coordinate r in
the external domain

rz, rt, rzz, rtt, rzt matrix (nr,nt) rζ , rθ, rζζ , rθθ, rζθ

ex.rz, ex.rt, ex.rzz,
ex.rtt, ex.rzt

matrix (nex,nt) rζ , rθ, rζζ , rθθ, rζθ in the exter-
nal domain

gzz, gzt, gtt matrix (nr,nt) Elements of the metric tensor
gζζ , gζθ and gθθ

ex.gzz, ex.gzt, ex.gtt matrix (nex,nt) Elements of the metric tensor
gζζ , gζθ and gθθ in the external
domain

D matrix block diag (nr,nr) Differentiation matrix ∂
∂ζ

100

ex.D matrix (nex,nex) Differentiation matrix ∂
∂ζ in the

external domain

Dt, Dt 11, Dt 01, Dt 10 matrix (nt,nt) Differentiation matrix ∂
∂θ for

each type of symmetry

Dt2, Dt2 11, Dt2 01,
Dt2 10

matrix (nt,nt) Second order differentiation ma-
trix ∂2

∂θ2 for each type of symme-
try

I matrix (1,nr) Integration matrix
∫ ηndom.

η0
dζ

It matrix (nt,1) Integration matrix
∫ π

0
sin θdθ for

symmetric functions

J matrix[4] (nr,nt) Jacobian of the mapping

ex.J matrix[4] (nex,nt) Jacobian of the mapping in the
external domain

gl diff gl Numerical differentiation object
for the radial direction

ex.gl diff gl Numerical differentiation object
for the radial direction in the ex-
ternal domain

leg diff leg Numerical differentiation object
for the latitudinal direction

A given scalar field ϕ(ζ, θ) will be represented by a 2D matrix with size nr×nt, each element
being the value of the function at each collocation point ϕij = ϕ(ζi, θj). With this representation,
the operators acting on the radial direction are implemented using left multiplication while those
acting in the latitudinal direction use right multiplication. Let’s see some examples

∂ϕ

∂ζ
: (map.D,phi)∫ ηndom.

η0

ϕdζ : (map.I,phi)

∂ϕ

∂θ
: (phi,map.Dt)∫ π

0

ϕ sin θ dθ : (phi,map.It)

We can also use operators in both sides at the same time

∂2ϕ

∂ζ∂θ
: (map.D,phi,map.Dt)∫ ηndom.

η0

∫ π

0

ϕr2rζ sin θ dζdθ : (map.I,phi*map.r*map.r*map.rz,map.It)

Most of the members of a mapping object are in fact references to the corresponding member
of the diff_gl or diff_leg object presented in the previous chapter, for example map.D is
equivalent to map.gl.D.

We can use the interpolation functions defined in diff_gl and diff_leg for interpolation in
ζ and θ respectively. The mapping class provides also a function for interpolating at some points
(rij ,θij) given in spherical coordinates

101

map.eval(phi,ri,thi,parity)

where ri and thi are matrices containing the interpolation points and parity is an integer
representing the type of symmetry of phi (00, 01, 10 or 11). For symmetric functions (00), this
parameter can be omitted.

6.2.1. Example

Let’s take the example in section 5.3.1 and rewrite it for spheroidal coordinates, now using the
mapping class.

/* The following example illustrates the use of the mapping

library in spheroidal coordinates */

#include<stdio.h>

#include"mapping.h"

#include"constants.h" //For the defintion of PI

//Function prototypes

double laplacian(matrix y,double r0,double th0);

double integral(matrix y);

// Define mapping objects as global variable

mapping map;

// Create references for spherical coordinates

matrix &r=map.r,&th=map.th;

int main() {

//Initialize map. In the example we will use 2 domains

map.set_ndomains(2);

map.set_npts(100);

map.set_nt(50);

//map.set_nex(20); // We won’t use the external domain

map.init();

map.R.setrow(0,1e-3*ones(1,map.nt));

// Use 1e-3 as the interior limit (instead of 0)

// to avoid a division by zero in the

// calculation of the laplacian

map.R.setrow(1,0.5+0.1*sin(th)*sin(th));

map.R.setrow(2,ones(1,map.nt));

map.remap();

matrix y;

//Define the function y

y=r*r*r*(1+sin(th)*sin(th));

double lap_y,int_y;

102

double r0=0.3,th0=PI/3;

lap_y=laplacian(y,r0,th0);

int_y=integral(y);

printf("The value of the laplacian at (%f,%f) is %e\n",r0,th0,lap_y);

printf("The volume integral is %e\n",int_y);

return 0;

}

// Function for calculating the laplacian of y at (r0,th0)

double laplacian(matrix y,double r0,double th0) {

matrix lap_y;

matrix &gzz=map.gzz,&gzt=map.gzt,>t=map.gtt;

matrix &rz=map.rz,&rzz=map.rzz,&rzt=map.rzt,&rt=map.rt,&rtt=map.rtt;

matrix &Dt=map.Dt,&Dt2=map.Dt2;

matrix_block_diag &D=map.D;

lap_y=gzz*(D,D,y)+2*gzt*(D,y,Dt)+(y,Dt2)/r/r

+(2./r/rz-rtt/r/r/rz-gzz*rzz/rz-gzt*(2*rzt/rz-cos(th)/sin(th)))*(D,y)

+cos(th)/r/r/sin(th)*(y,Dt);

lap_y=map.eval(lap_y,r0*ones(1,1),th0*ones(1,1));

return lap_y(0);

}

// Function for calculating the volume integral of y

double integral(matrix y) {

return 2*PI*(map.I,r*r*map.rz*y,map.It)(0);

}

The output will be the same that in the previous example

The value of the laplacian at (0.300000,1.047198) is 6.150000e+00

The volume integral is 3.490659e+00

103

7
Stars in three dimensions

7.1. Introduction

The need to deal with three-dimensional stellar models comes from the common situation where
the large scales of a star do not own any symmetry. Typically that occurs when the star owns a
large-scale magnetic field with no special symmetry or if the star is in the gravitational field of
another massive object. In the general case the situation is even more complex since the star is
usually not in a steady state: a variable tidal potential is a common case. However, the first step
to deal with these situations is to focus on a steady state that may only exist as a time-averaged
state. Fortunately, in a steady state we can build on the previous 2D approach and devise the
tools for constructing the 3D stellar models.

The first step is to derive the 3D mapping, which maps the spheroidal shape of the star to
the spherical coordinates. We are still inspired by the work of Bonazzola et al. (1998), who
also considered the question of 3D stellar models to deal with binary neutron stars. Their work
however aimed at including the General Relativity formalism to include strong gravitational field
effects (Bonazzola et al., 1999).

7.2. The mapping

We follow the 2D case described in chap. 6 but with a spheroid described by r = r(ζ, θ′, φ′)
θ = θ′

φ = φ′
(7.1)

The angular variables remain the spherical ones but the radial distance now depends on (θ′, φ′).

7.2.1. Question of symmetry

In chapter 6 we implicitly assumed that the star was symmetric with respect to equator, the
consequence of which being that the surface verifies R(θ) = R(π − θ) and A0(ζ) is a polynomial
of odd order in ζ. We now discuss this choice since we need to consider stars of any shape as
long as they are topologically equivalent to a sphere.

104

Let us consider a stellar surface of equation

r = R(θ, φ) (7.2)

We can always split R(θ, φ) into its symmetric and anti-symmetric parts with respect to origin,
namely in the transformation

(θ, φ) → (π − θ, φ+ π)

Hence, we write

R(θ, φ) = Rs(θ, φ) + δRa(θ, φ) (7.3)

where {
Rs(θ, φ) = Rs(π − θ, φ+ π)
δRa(θ, φ) = −δRa(π − θ, φ+ π)

(7.4)

Our notation underlines the fact that deviations from central symmetry are usually small.
The splitting of R(θ, φ) into its symmetric and anti-symmetric parts implies some constraints

on the mapping r(ζ, θ′, φ′). Indeed, we require that r ∼ ζ near the centre, namely that the new
coordinate system behaves just like the spherical one. Basically, we must have

r(r(−ζ, θ, φ), θ, φ) = r(r(ζ, π − θ, φ+ π), π − θ, φ+ π) (7.5)

which implies

r(−ζ, θ, φ) = −r(ζ, π − θ, φ+ π) (7.6)

The axisymmetric case

Let’s come back to the axisymmetric where we may write

r(ζ, θ, φ) = aζ +Ao(ζ)(Rs(θ)− a) +Ae(ζ)δRa(θ) with 0 ≤ ζ ≤ 1 (7.7)

Symmetry constraint (7.6) imposes the parity of the Ao and Ae functions, namely that

Ao(−ζ) = −Ao(ζ) and Ae(−ζ) = Ae(ζ) (7.8)

meaning that Ao(ζ) is a polynomial of odd order while Ae(ζ) is of even order.
Hence, for the lowest order polynomials that verify A(0) = 0, A(1) = 1 and A′(0) = 0,

A′(1) = 0, we can choose

Ao(ζ) =
1

2
(5ζ3 − 3ζ5) and Ae(ζ) = 2ζ2 − ζ4 (7.9)

We note that the expression of Ao(ζ) is the same as in (6.5) and agrees with that of Bonazzola
et al. (1998). The expression of Ae(ζ) differs from that of Bonazzola et al. (1998) who prefer
Ae(ζ) = 3ζ4 − 2ζ6 thus of higher order. The advantage of Ae(ζ) expression in (7.9) is that
it induces less coupling between the Chebyshev polynomials describing the solution. However,
the polynomial proposed by Bonazzola et al. (1998) vanishes more rapidly near the origin thus
inducing less coupling in the spherical harmonics expansion of the solution. The mapping is
closer to the spherical coordinates near the centre. The best of the two possibilities is not known
and has to be determined by numerical experiments.

105

The non-axisymmetric case

We can now just generalize (7.7) to the non-axisymmetric case, namely

r(ζ, θ, φ) = aζ +Ao(ζ)(Rs(θ, φ)− a) +Ae(ζ)δRa(θ, φ) (7.10)

Since we’ll be using spectral method, functions of (θ, φ) are expanded on the spherical harmonics.
We recall that

Y m
ℓ (π − θ, φ+ π) = (−1)ℓY m

ℓ (θ, φ) (7.11)

which implies that

Rs(θ, φ) =
∑

ℓ=0,2,...

+ℓ∑
m=−ℓ

aℓmY
m
ℓ (θ, φ) (7.12)

δRa(θ, φ) =
∑

ℓ=1,3,...

+ℓ∑
m=−ℓ

bℓmY
m
ℓ (θ, φ) (7.13)

If we assume that the star is in equilibrium in a steady tidal potential then we can set δRa = 0
and can restrict expansions to even m’s. This is the first step to do.

7.3. Geometrical quantities

Taking into account that r ≡ r(ζ, θ, φ) implies some changes in the covariant and contra-variant
basis, namely:

• Covariant basis vectors: Ei =
∂r

∂xi

Eζ = rζ r̂, Eθ = rθr̂ + rθ̂, Eφ = rφr̂ + r sin θφ̂, (7.14)

• Contravariant basis1 vectors: Ei = ∇xi

Eζ =
r̂

rζ
− rθ
rrζ

θ̂ − rφ
rrζ sin θ

φ̂, Eθ =
θ̂

r
, Eφ =

φ̂

r sin θ
, (7.15)

Using the basis vectors, we can calculate the metric tensor

gij = Ei ·Ej =

 r2ζ rζrθ rζrφ
rζrθ r2 + r2θ rθrφ
rζrφ rθrφ r2 sin2 θ

 (7.16)

or, in contravariant form

gij = Ei ·Ej =


(r2 + r2θ) sin

2 θ + r2φ

r2r2ζ sin
2 θ

−rθ
r2rζ

− rφ
rζr2 sin2 θ

−rθ
r2rζ

1

r2
0

− rφ
rζr2 sin2 θ

0
1

r2 sin2 θ

 (7.17)

1The components of the contravariant basis vectors are obtained from the covariant ones by solving the 3×3 = 9
equations Ei ·Ej = δij implied by the fact that {Ei}i=1−3 is the dual basis of {Ei}i=1−3.

106

We note that

|g| = det(gij) = det(gij) = r4r2ζ sin
2 θ (7.18)

is unchanged compared to the 2D case.

107

Bibliography

Bonazzola, S., Gourgoulhon, E., & Marck, J.-A. 1998. Numerical approach for high precision 3D
relativistic star models. Phys. Rev. D, 58(10), 104020.

Bonazzola, S., Gourgoulhon, E., & Marck, J.-A. 1999. Spectral methods in general relativistic
astrophysics. J. Computational and Applied Math., 109, 433.

Espinosa Lara, F., & Rieutord, M. 2013. Self-consistent 2D models of fast rotating early-type
stars. A&A, 552, A35.

Grevesse, N., & Noels, A. 1993. The solar composition. Pages 15–25 of: Prantzos, N., Vangioni-
Flam, E., & Cassé, M. (eds), Origin and evolution of the elements. Cambridge Univ. Press.

Grevesse, N., & Sauval, A. J. 1998. Standard Solar Composition. Space Science Rev., 85(May),
161–174.

Kippenhahn, R., Weigert, A., & Weiss, A. 2012. Stellar structure and Evolution. Springer.

Mombarg, Joey S. G., Dotter, Aaron, Rieutord, Michel, Michielsen, Mathias, Van Reeth, Timo-
thy, & Aerts, Conny. 2022. Predictions for Gravity-mode Periods and Surface Abundances in
Intermediate-mass Dwarfs from Shear Mixing and Radiative Levitation. ApJ, 925(2), 154.

Rieutord, M. 2006. On the dynamics of radiative zones in rotating star. Pages 275–295 of:
Rieutord, M., & Dubrulle, B. (eds), Stellar fluid dynamics and numerical simulations: From
the sun to neutron stars, vol. 21. EAS.

Rieutord, M., Espinosa Lara, F., & Putigny, B. 2016. An algorithm for computing the 2D
structure of fast rotating stars. to appear in J. Comp. Phys., 1, 1–39.

Rogers, F. J., Swenson, F. J., & Iglesias, C. A. 1996. OPAL Equation-of-State Tables for
Astrophysical Applications. ApJ, 456(Jan.), 902.

Seaton, M. J. 2005. Opacity Project data on CD for mean opacities and radiative accelerations.
MNRAS, 362(1), L1–L3.

108

	Getting started
	Prerequisites
	A note about the performance of the code

	Installation
	Configure
	Build and Install
	Updating the code

	Checking the Installation

	Basic usage
	Configuration files
	Default values
	Chemical composition
	Opacity tables

	ester 1d input parameters
	ester 2d input parameters
	ester evol input parameters
	Some recipes
	Spatial resolution and memory requirements
	Estimating the precision of the output model

	Generating custom output files
	Python module
	Using ESTER Native format
	Using HDF5

	General structure of the code
	Equations to be solved
	With dimensional variables
	Simplifications
	Scaled equations
	Boundary conditions
	Integral constraints
	The mapping

	The algorithm
	Discretization
	Iterations

	Implementation
	The vector
	The equations
	Comfort equations
	Setting interface and boundary conditions
	Implementation of Newton's algorithm

	Modifying the equations
	Adding a new force or a heat source
	Adding a new equation and a new variable

	Heading towards time evolution
	Simple scheme for hydrogen burning

	Matrix Algebra. The matrix library.
	Matrix creation and manipulation
	File input/output
	Operators
	Block diagonal matrices
	Reference
	A note about methods and functions
	Matrix manipulation
	File input/output
	Special matrices
	Matrix functions
	Mathematical functions
	Block diagonal matrices

	Numerical differentiation
	Introduction
	Collocation/Pseudospectral methods
	Relation with spectral methods
	Multi-domain
	Numerical differentiation in ESTER

	Multi-domain Gauss-Lobatto numerical differentiation
	Example

	Gauss-Legendre numerical differentiation
	Example

	Reference
	Gauss-Lobatto differentiation
	Legendre differentiation

	Mapping. Axisymmetric spheroidal coordinates
	Introduction
	Coordinate mapping
	Spheroidal coordinates
	Multidomain and continuity conditions
	The meridional stream function

	Coordinate mapping in ESTER
	Example

	Stars in three dimensions
	Introduction
	The mapping
	Question of symmetry

	Geometrical quantities

